,导致短路电流低。因此P型钝化接触电池相对N型钝化接触电池更没有优势,这也是几乎所有企业都将目光聚焦在N型钝化接触电池的原因。 1.3 钝化接触太阳能电池的潜力 从宏观上讲,SiOx/(n+或p+
养殖结果。
渔光互补项目相比传统地面电站,除了要考虑渔业和水质之外,在管理上也存在几个难点:
触电及 PID 风险:鱼塘湿度大,设备绝缘性能容易变弱,漏电风险加大;高湿环境下,PID 衰减更明显
,传统抑制 PID 的方法有触电危险。渔民经常进入作业,触电风险高;
运维困难:水面巡检工作量大,故障排查困难;
土建困难:渔塘边上地质结构很软,建房子、打地基难;
设备腐蚀:高温高湿下设备更
的主要原因。从整个世界地震板块来看,我国地震区属在环太平洋地震带与欧亚地震带之间,这两个地震带是比较活跃的。四川省正好位于欧亚地震带上,因此小地震发生频率较为频繁,偶有较强地震发生。
地震常常造成
事项呢?
当光伏电站遇到地震该怎么办?
1、当屋顶光伏电站的太阳能电池板在地震中遭到破坏,与房屋的瓦砾夹杂堆在一起时,阳光照射在电池板上时可能会发电,不做任何的保护措施就光手触碰的话有可能会触电
。
渔光互补项目相比传统地面电站,除了要考虑渔业和水质之外,在管理上也存在几个难点:
触电及 PID 风险:鱼塘湿度大,设备绝缘性能容易变弱,漏电风险加大;高湿环境下,PID 衰减更明显,传统抑制
PID 的方法有触电危险。渔民经常进入作业,触电风险高;运维困难:水面巡检工作量大,故障排查困难;土建困难:渔塘边上地质结构很软,建房子、打地基难;设备腐蚀:高温高湿下设备更容易被锈蚀。
通威股份
哪里?带着这个疑问,古瑞瓦特技术人员实地走访考察了这个项目。
在逆变器安装现场,客服技术人员一下就发现原因所在,原来安装人员把逆变器的地线直接接在避雷针下面的铝排上,光伏防雷变成了引雷。那么,地线
损害,就需要设置防雷与接地系统进行防护。
2)安全接地,防止用电设备由于绝缘老化、损坏引起触电、火灾等事故。光伏电站设备寿命是25年,而且放在户外,容易受到外界影响,设备接地后,就可以减少事故的发生
27.98%。表2总结了理想情况下单晶硅太阳电池的理论极限效率。
2高效单晶硅太阳电池结构及特点分析
MartinGreen分析了造成电池效率损失的原因,包括如图1所示的五个可能途径:(1
Kaneka公司致力于单晶硅异质结太阳电池的研究,他们采用双面制绒的硅片,以本征a-Si∶H作为钝化层,能取得高的开路电压,这也是获得高效率的重要原因。该硅片采用了双面制绒技术,降低了光学损失,其两面都
应用。
据了解,这种现象的大部分原因在于我国光伏项目开发、设计和持有者不是同一主体,对持有者而言,只要求固定收益率,对于技术进步的追求热情并不高。加之投资企业心态趋于求稳,没有真正做到数据化经营,同时设计
间隙和爬电间距不够的地方较易形成电击穿、漏电,从而发生电拉弧或触电的安全隐患,一旦出现拉弧现象,因直流电压高、能量强度高而难以扑灭、引起火灾。
有观点认为,1500伏系统在做电站设计时要尽量减少直流
。
关于组件热斑产生的原因、问题电池的来源及相应对策
(一) 组件热斑产生的原因
光伏组件的核心组成部分是太阳电池,一般说来,每个组件所用太阳电池的电特性要基本一致,否则将在电性能不好或被遮挡的
) 问题电池的来源
1. 硅材料自身的缺陷
2. 电池制造的原因
1) 去边不彻底、边缘短路
2) 去边过头,P型层向N型层中心延伸,边缘栅线引起局部短路
3) 烧结不良,正电极或背电极与硅片
达到27.98%。表2总结了理想情况下单晶硅太阳电池的理论极限效率。
2 高效单晶硅太阳电池结构及特点分析
Martin Green分析了造成电池效率损失的原因,包括如图1所示的五个可能
重要原因。该硅片采用了双面制绒技术,降低了光学损失,其两面都生长TCO,具有光学透明与导电双重功能。此外,他们还在Ag电极上电镀Cu,降低了成本且提高了导电性,从而进一步优化了SHJ太阳电池的性能,其
。
小盒子总结了一些避免事故的安全事项,供大家参考:
火灾
火灾是光伏电站经济效益损失最大的事故。
光伏电站中的火灾事故原因很多,主要有以下几个方面:
1)设备和电缆老化或者故障,造成短路
;
2)熔断器、断路器选型和安装不当,造成直流拉弧;
3)系统设计缺陷,电缆或者开关载流量偏少,选成局部温度过高;
4)施工不当,电气设备螺丝拧得过松,电缆接头压接不牢,选成接头处接触电阻过大;或者