技术|太阳能电池组件“热斑效应”分析

来源:OFweek太阳能光伏网发布时间:2019-04-15 13:54:18

随着科技日新月异的发展,光伏发电技术在国内外均得到了广泛的应用,其应用形式多种多样,应用场所分布广泛,主要用于大型地面光伏电站、住宅和商用建筑物的屋顶、建筑光伏建筑一体化、光伏路灯等。在这些场所,不可避免的会出现建筑物、树荫、烟囱、灰尘、云朵等对太阳能电池组件造成遮挡。因此,人们关心的是此类情况对太阳能电池的发电效率影响有多大,又该如何解决。

在实际应用中,太阳能电池一般是由多块电池组件串联或并联起来,以获得所期望的电压或电流的。为了达到较高的光电转换效率,电池组件中的每一块电池片都须具有相似的特性。在使用过程中,可能出现一个或一组电池不匹配,如:出现裂纹、内部连接失效或遮光等情况,导致其特性与整体不谐调。

在一定条件下,一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量。被遮蔽的太阳电池组件此时会发热,这就是热斑效应。这种效应能严重的破坏太阳电池。有光照的太阳能电池所产生的部分能量,都可能被遮蔽的电池所消耗。为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。

关于组件热斑产生的原因、问题电池的来源及相应对策

(一) 组件热斑产生的原因

光伏组件的核心组成部分是太阳电池,一般说来,每个组件所用太阳电池的电特性要基本一致,否则将在电性能不好或被遮挡的电池(问题电池)上产生所谓热斑效应。

为防止热斑产生应该在每一片电池上都并联一个旁路二极管,在当电池发生问题或被遮挡时,其它电池产生的大于问题电池的电流将被旁路二极管旁路。

而事实上,在每一片电池上都并联一个二极管是不现实的。一般在组件上是18片(36片或54片电池串联的组件)或24片(72片电池串联的组件)电池串联后并联一个二极管。

可以想象,当这18片或24片电池中产生的电流不一致时,也就是有问题电池存在时,通过这串电池的电流将在问题电池上引起热斑。若电池串与串之间电流不一致,可以在接了旁路二极管的组件特性曲线上看到所谓台阶曲线或异常曲线。

如果组件内太阳电池性能本来就不一致,必然导致组件发生热斑现象。我们可以通过组件的输出特性曲线和红外成像看到组件热斑现象的存在。

若是由于组件内太阳电池光衰减后效率下降,引起的组件内太阳电池性能不一致。我们可以通过测试组件衰减前和衰减后的输出特性曲线以及红外成像看到组件在光照前后发生的变化。

若组件未接旁路二极管,即使有问题电池存在,组件的输出特性曲线也看不到台阶曲线,但短路电流应比正常组件要小,这表明热斑现象存在。
 


(二) 问题电池的来源

1. 硅材料自身的缺陷

2. 电池制造的原因

1) 去边不彻底、边缘短路

2) 去边过头,P型层向N型层中心延伸,边缘栅线引起局部短路

3) 烧结不良,正电极或背电极与硅片接触不良,串联电阻增大

4) 烧结过度,即将使PN结烧透,短路

以上几种有可能在分选测试时尚未暴露,而做成组件后在长期的使用过程中,逐渐变化而导致愈演愈烈

3. 同一档次的电池片性能不一致

1) 电池分选测试时的误判

a) 分选测试仪自身误差

b) 测试仪与测试仪之间的差异

c) 分选测试仪的误动作

2) 电池自身的衰减不一致

3) 人为的混片

如电池上信息不准确,有可能贴错标签、混包,电池外观检验时的混片等

4. 组件制造的原因

1) 焊接前混片或补片时混片

2) 电池片自身的隐裂

3) 手工焊接过程造成的裂片或隐裂片,机器焊接曲线异常的比例一般小于手工焊接

4) 虚焊,每天的巡检报告中几乎都有焊接不良的报道

5) 组件生产过程中产生的隐裂,如玻璃弯曲引起裂片或温度过高时装框,万向球顶裂电池

6) 返修组件时的焊接不良,互连条之间的搭接,接触电阻大

7) 组件中异物引起短路

8) 焊背面时,正面互连条脱开,使互连条与电池间存在锡粒,层压造成电池破裂

(三) 已经采取的措施

1. 电池生产线采用72片一包的包装,避免组件生产线再次数片带来的混片

2. 电池生产线先外观检验,后测试分选,防止测试分选后再外观检验造成混片

3. 组件生产时用整包的电池片,不用散包,防止混片

4. 组件补片原则,一定要补同一档次的电池,(正在准备试75片一包的试验)

5. 焊接前检查隐裂片

6. 焊串模板定期检查,防止互连条脱焊

7. 严格检查异物

8. 加强虚焊检查,防止虚焊

9. 搬运时尽量减少玻璃弯曲

10. 大组件采用4毫米玻璃,以减少弯曲,增加强度

11. 搬运周转车改为玻璃垂直放置

12. 不允许>50℃时装框

13. 返修时不允许互连条对接

14. 散包电池必须重新分选测试,凑成整包后再做组件

15. 库存超过一定期限的电池在做组件前应经过二次分选测试

16. 测试时,组件一定要在规定温度范围内

17. 给出发现曲线异常后的处理方法,防止不良组件流到客户手中

18. 电池先光衰减后再分选测试(正在试验实施中)

虽然采取了以上部分措施,目前曲线异常依然存在,很多组件都有不同程度的热斑,有些措施实施起来有些难度,进展还需要时间和相关设备,还有措施实施的还不彻底。如何保证每个组件都用一包72片或54片同一档次的电池,且不会衰减,仍然需要持续改进。
 


光伏组件的热斑效应和试验方法

热斑耐久试验:

热斑效应可导致电池局部烧毁形成暗斑、焊点熔化、封装材料老化等永久性损坏,是影响光伏组件输出功率和使用寿命的重要因素,甚至可能导致安全隐患。因此,IEC 61215:2005《地面用晶体硅光伏组件设计鉴定和定性》专门设置了热斑耐久试验,以考核光伏组件经受热斑加热效应的能力。

热斑耐久试验过程包括最坏情况的确定、5小时热斑试验以及试验后的诊断测量,过程分为以下4 个步骤。

1、选定最差电池

由于受到检测时间和成本的限制,热斑耐久试验不能针对组件中的每一个电池进行。因此,正式试验之前先比较和选择热斑加热效应最显著的电池。具体方法是,在一定光照条件下,将组件短路,依次遮挡每个电池,被遮光后稳定温度最高者为最差电池片。电池温度可以用热成像仪等仪器测量。对于串联-并联-串联连接方式的大型组件,标准允许随机选择其中30%的电池进行比较。

对于串联和串联-并联连接方式的组件,IEC61215 标准给出了两种快速的方法。第一种方法是:将组件短路,不遮光,直接寻找稳定工作温度最高的电池。第二种方法是:将组件短路,依次遮挡每个电池,选择遮光后组件短路电流减少最大的电池。不过大部分推荐采用第二种方法,这主要是考虑到测量短路电流精度较高,测量结果可以用于下一个步骤的判断,而且短路电流跟失谐电池消耗的功率有直接关系。

2、确定最坏遮光比例

选定最差电池之后,还要确定在何种遮光比例下热斑的温度最高。即用一组遮光增量为5%的一组不透明盖板,逐渐减少对该电池的遮光面积,监测电池被遮部位背面的稳定温度,看何时达到最高温度。目前最常见的电池规格有156mm*156mm 和125mm*125mm 两种,因此实验室需要准备两组不透明盖板。

以上两个步骤所使用的辐射源,可以是稳态太阳模拟器或自然阳光,辐照度不低于700W/m2,不均匀度不超过±2%,瞬时稳定度在±5%以内。如果气候条件允许,可优先选择自然阳光。南方的实验室在这方面优势明显。

3、5小时热斑耐久试验

标准要求辐射源为C 类或更好的稳态太阳模拟器或自然阳光,其辐照度为1000W/m2±10%。实际上自然阳光很难在5 小时的长时间内保持10%的稳定度,因此须采用稳态太阳模拟器。光谱近似日光的氙灯是最佳选择,全光谱金卤灯也可以满足光谱要求。须注意灯阵列的设计,使测试平面的辐照不均匀度小于±10%;同时配备稳压电源,保证试验期间辐照不稳定度小于10%。

4、试验后的诊断测量

组件经过热斑耐久试验之后,首先进行外观检查,对任何裂纹、气泡或脱层等情况进行记录或照相。如果发现严重外观缺陷,则视为不合格。如果存在外观缺陷但不属于严重外观缺陷,则对另外2 块电池重复热斑耐久试验。试验后不再发现外观缺陷,则算合格。此外,组件在标准试验条件下的最大输出功率Pm 的衰减不能超过5%;绝缘电阻应满足初始试验的同样要求。

总结:

解决热斑效应问题的通常做法,是在组件上加装旁路二极管。通常情况

下,旁路二极管处于反偏压,不影响组件正常工作。当一个电池被遮挡时,其

他电池促其反偏成为大电阻,此时二极管导通,总电池中超过被遮电池光生电

流的部分被二极管分流,从而避免被遮电池过热损坏。光伏组件中一般不会给

每个电池配一个旁路二极管,而是若干个电池为一组配一个。此时被遮挡电池

只影响其所在电池组的发电能力。


索比光伏网 https://news.solarbe.com/201904/15/305374.html
责任编辑:yangran
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
逆势扩张!印度一企业8.5GW太阳能电池及组件生产制造项目启动建设来源:索比光伏网 发布时间:2025-12-30 10:02:30

近日,印度光伏制造商Emmvee Photovoltaic Power宣布,其旗下子公司Emmvee Energy位于卡纳塔克邦班加罗尔附近Sulibele Hoskote Taluk的2.5GW光伏组件厂正式投产,公司组件总产能由此提升至10.3GW,产能扩张计划按IPO招股书披露时间表顺利推进。

印度ALMM清单覆盖太阳能组件产能增至144.8GW来源:索比光伏网 发布时间:2025-12-30 09:56:47

近日,印度新能源与可再生能源部(MNRE)宣布向《获批型号及制造商名录》(ALMM)新增23119兆瓦太阳能组件产能,使该名录覆盖的组件总制造产能正式攀升至144.8吉瓦,同时同步修订电池专项名录并公布硅片纳入认证的长期规划,持续推进光伏产业链本土化进程。

合肥新站钙钛矿产业大会召开,全力打造“长三角钙钛矿光伏技术特色产业园”来源:钙钛矿工厂 发布时间:2025-12-29 09:47:39

12月26日下午,合肥新站高新区钙钛矿光伏产业创新发展会正式召开,高校专家、产业链企业金融机构、科创孵化平台代表齐聚新站共话钙钛矿光伏产业发展新机遇。

2025光伏创新图鉴 谁将主导新技术来源:索比光伏网 发布时间:2025-12-26 15:52:19

2025年,在技术创新的浪潮中,光伏电池组件企业聚焦TOPCon、BC、HJT等核心技术路线,持续刷新效率纪录、推进产业化落地,同时在组件技术与系统集成领域斩获颇丰,形成了多元化的创新格局。

美国前9个月进口太阳能电池片17GW来源:光伏情报处 发布时间:2025-12-26 15:32:32

根据美国海关进口数据统计,2025 年1-9 月美国累计进口光伏电池片17.1GW, 较2024年同期的9.86GW增长73%。

34.76%!爱旭两端钙钛矿/异质结叠层电池创新高!来源:钙钛矿工厂 发布时间:2025-12-25 09:46:04

近日,据外媒报道,本在月初由欧洲能源研究联盟联合计划光伏太阳能组织在布鲁塞尔举办的BecomePV2025会议上,爱旭旗下位于德国的研究机构SolarlabAikoEurope介绍了其基于双端 和三端叠层钙钛矿/晶硅叠层太阳能电池研究的最新进展。两端钙钛矿/叠层电池的潜力取决于其与现有硅太阳能组件制造工艺的兼容性。据该公司称,基于爱旭的ABC电池的概念验证三端钙钛矿/晶硅叠层技术的早期测试结果表明,该技术具有更高的能量产出和更低的平准化电力成本。

2025–2028年南部非洲太阳能光伏与储能市场展望与策略来源:西西弗光储 发布时间:2025-12-25 09:42:37

南部非洲太阳能光伏与储能市场战略分析报告1.执行摘要:2025年的结构性脱钩2025年,南部非洲能源格局迎来了一个决定性的转折点,其特征是能源安全与国家垄断电力公司规划的根本性“脱钩”。然而,从2022年到2025年,这一范式已被系统性地瓦解。本报告认为,2025年至2028年期间的主旋律将不再是主导上一个十年的政府其采购计划。监管框架:2025年3月,南非国家能源监管局批准了国家过网框架。这种“虚拟公用事业”模式是2026-2028年期间的主要投资载体。

该地大型离网太阳能园区正式投运来源:索比光伏网 发布时间:2025-12-24 08:58:23

近日,安哥拉东部莫希科省卡宗博地区大型离网太阳能园区正式投运。该园区作为撒哈拉以南非洲规模最大的离网“光伏+储能”系统,不仅标志着安哥拉在可再生能源领域实现重大突破,更将为偏远地区经济社会发展注入绿色动力,直接保障13.6万居民的稳定用电。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

目前最高值!AFM:双重钝化策略使钙钛矿电池太阳能-氢能转换效率达6.5%来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:13:06

FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。该系统太阳能-氢能转换效率达6.5%,是目前报道的单吸收体PV-EC系统中最高值。单吸收体水分解效率创纪录:将优化后的1.0cm器件集成于PV-EC系统,实现6.5%的太阳能-氢能转换效率,为目前单吸收体光解水系统最高值。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。