索比光伏网讯:中国科学院等离子体物理研究所太阳能材料与工程研究室通过对有机金属螯合物作为量子点敏化剂前驱体的可能性的研究,发展了量子点敏化太阳电池(QDSCs)中量子点制备的新方法。该项目以
IPP_CAS_found_new_approach_to_prepare_quantum_dot_sensitized_solar cells该新方法采用金属硫族络合物(MCC)为前躯体,MCC吸附到二氧化钛(TiO2)纳米颗粒表面后,将TiO2纳米膜进行热处理
为电池的一个电极。太阳能电池就是以TCO薄膜为衬底生长的,用等离子体增强化学气相沉积法(PECVD)生长的太阳能电池层也称为有效层。有效层包括两个pin串联的双结结构。与TCO薄膜连接的第一结称为顶层
1994年提出这一方法,目前用这种方法制备的电池,试验室最高效率已达10.7%。薄膜沉积后,采用激光设备对沉积膜进行高速、精确地划刻。随着技术的发展,激光作为一个功能强大的生产性工具,已广泛应用于制造、表面
索比光伏网讯:清洗制绒作为太阳电池生产中的第一个工序,该工序主要用于硅片在扩散前的硅片腐蚀处理。目的是为了在硅片上获得表面绒面结构,这种绒面结构对提高晶体硅对光的吸收率有着重要的作用。对于单晶硅来说
、激光刻槽、等离子刻蚀(RIE)和各向同性酸腐蚀。机械刻槽的工艺方法要求硅片厚度在200m以上,因为刻槽的深度一般在50m的量级上,所以对硅片的厚度要求很高,而这样的技术会增加成本。等离子刻蚀制备出硅片
未来发展的趋势。目前,多晶硅薄膜常用的制备方法有等离子体增强化学气相沉积,热丝化学气相沉积,准分子激光晶化,固相晶化,快速热处理等。现有研究采用真空蒸镀法制备非晶薄膜后经铝诱导晶化得到多晶硅薄膜。相比
其它方法,该方法具有工艺简单,晶化温度较低,晶化时间较短,薄膜晶化率较高,晶粒尺寸较大等特点。通过原子力显微镜、拉曼光谱等分析手段深入研究了衬底距离、衬底温度、退火温度等对薄膜表面形貌、晶粒尺寸和分布
设备研究室(八室)夏洋研究员带领的研究团队原创性地提出利用等离子体浸没离子注入技术制备黑硅材料。该团队利用自行研制的等离子体浸没离子注入机(国家自然科学基金委、中科院装备项目、方向性项目支持)制备了多种微观
改进,在全国产设备生产线研发出多晶黑硅太阳能电池(156mm156mm,多晶),批量平均效率高达17.46%,最高可到17.65%。 图1 低反射的多晶黑硅硅片 图2 高效率多晶黑硅太阳电池图3 黑硅表面微观结构,表面大量的纳米孔可以增加光吸收图4 批量多晶黑硅电池实验数据
洋研究员带领的研究团队原创性地提出利用等离子体浸没离子注入技术制备黑硅材料。该团队利用自行研制的等离子体浸没离子注入机(国家自然科学基金委、中科院装备项目、方向性项目支持)制备了多种微观结构的黑硅
改进,在全国产设备生产线研发出多晶黑硅太阳能电池(156mm156mm,多晶),批量平均效率高达17.46%,最高可到17.65%。 低反射的多晶黑硅 高效率多晶黑硅太阳电池 黑硅表面微观结构,表面大量的纳米孔可以增加光吸收批量多晶黑硅电池实验数据
晶硅电池在过去20年里有了很大发展,许多新技术的采用和引入使太阳电池效率有了很大提高。在早期的硅电池研究中,人们探索各种各样的电池结构和技术来改进电池性能,如背表面场,浅结,绒面,氧化膜钝化,Ti
(UNSW)的钝化发射区电池(PESC,PERC,PERL以及德国Fraumhofer太阳能研究所的局域化背表面场(LBSF)电池等。
我国在八五和九五期间也进行了高效电池研究,并取得了可喜结果。近年来
硅材料,氢钝化的效果越好。氢钝化可采用离子注入或等离子体处理。在多晶硅太阳电池表面采用pECVD法镀上一层氮化硅减反射膜,由于硅烷分解时产生氢离子,对多晶硅可产生氢钝化的效果。在高效太阳电池上常采用表面
两个表面同时进行清洗、干燥。首先磁控溅射沉积金属和金属氧化层,以增强衬底的反射率。然后采用等离子体化学气相沉积法(PECVD)沉积非晶硅层,以形成叠层太阳电池结构,这是整个制造过程中最关键的工艺步骤
采用卷对卷(rolltoroll)工艺制造,便于大面积连续生产,降低成本的潜力很大,具有很强的竞争力。柔性衬底太阳电池能被安置在流线型汽车的顶部、帆船、赛艇、摩托艇的船舱等不平整表面、房屋等建筑物的楼顶
不稳定性,二是电子和离子的辐射会对所沉积的薄膜构成化学结构上的损伤。等离子体作为准中性气体,它的状态容易被外部条件的改变而发生变化。衬底表面的带电状态,反应器壁的薄膜附着,电源的波动,气体的流速都会
沉积的本征a-Si:H薄膜的缺陷态密度低,掺杂a-Si:H的掺杂效率高且光吸收系数低,最重要的是最终形成的a-Si:H/Si界面的态密度要低。目前,普遍采用的等离子体增强化学气相沉积法(PECVD)沉积