,RIE),该方法是等离子体在电场作用下加速撞击硅片,在硅片表面形成纳米结构,从而降低多晶硅片的反射率。湿法黑硅制绒工艺为金属催化化学腐蚀法(metal Catalyzed Chemical Etching
,如果这项技术投入使用,节约用电将不再是一句口号,同时大幅度缓解电网高峰压力。加拿大ALTER NRG总裁RICHARD FISH发表演讲等离子体气化:废物能源解决方案的下一代,通过对废物流的热处理
(ReactiveIonEtching,RIE),该方法是等离子体在电场作用下加速撞击硅片,在硅片表面形成纳米结构,从而降低多晶硅片的反射率。湿法黑硅制绒工艺为金属催化化学腐蚀法
。 科学家们采用了一种晶圆直接键合(direct wafer bonding)技术,将一些几微米的III-V族半导体材料转移到硅中。在等离子体被激活之后,将太阳能电池单元材料在真空中加压键合。Ⅲ-V族
了一种晶圆直接键合(directwaferbonding)技术,将一些几微米的III-V族半导体材料转移到硅中。在等离子体被激活之后,将太阳能电池单元材料在真空中加压键合。Ⅲ-V族半导体材料表面的原子
粒子,从而吸收太阳能。完整的过程也并不难理解。科学家通过使用等离子体反应堆生产硅纳米粒子,将硅晶体变为纳米级别的粉末状物质,其中,每一个粒子由约2000个硅原子组成。科学家将粉状的物质整合进一张薄膜
粒子,从而吸收太阳能。完整的过程也并不难理解。科学家通过使用等离子体反应堆生产硅纳米粒子,将硅晶体变为纳米级别的粉末状物质,其中,每一个粒子由约 2000 个硅原子组成。科学家将粉状的物质整合进一张薄膜
,并将光线反射到硅纳米粒子,从而吸收太阳能。 完整的过程也并不难理解。科学家通过使用等离子体反应堆生产硅纳米粒子,将硅晶体变为纳米级别的粉末状物质,其中,每一个粒子由约 2000 个硅原子组成
世界新纪录,等离子体压强首次超过两个大气压;在世界最强辐射源——“Z机”装置内开启了氘—氚受控核聚变实验。在其他新能源领域,科学家也取得了许多成果。他们开发出可把二氧化碳和水直接变成液态烃燃料的新型
与燃料电池技术等十五个方面的能源技术实现重大突破。将实现重点煤矿区基本工作面无人化,全国采煤机械化程度达到95%以上;实现CO2的可靠性封存、监测及长距离安全运输;开展聚变堆芯燃烧等离子体的实验、控制技术和