本文大湾区大学于华、阜阳师范大学张甲甲、昆明理工大学于月和陈江照等人通过三氟甲氧基功能化双胍阳离子策略,实现了对电子选择层与埋底界面的同步稳定。本研究提出了一种通过双胍阳离子功能化同步稳定电子选择层与界面的策略,为实现高性能空气制备钙钛矿电池提供了可行路径。
钙钛矿太阳能模块的运行稳定性通常低于小尺寸器件,这是其走向实际应用的关键挑战。可印刷碳电极具备高稳定性和低成本优势,是解决全印刷钙钛矿模块稳定性问题的理想策略。然而,碳电极模块的光电转换效率仍落后于金属电极器件。我们制备了活性面积约50cm的全印刷碳电极钙钛矿模块,实现了20.41%的效率。我们相信该处理策略将推动碳电极钙钛矿模块向商业化规模化发展。
离子迁移严重威胁钙钛矿发光二极管的稳定性。基于此,采用BCPO的PeLEDs实现了25.8%的最大外量子效率与13.4小时的T,EL寿命,是目前性能最优异的绿光PeLEDs之一。本工作通过分子结构设计与界面工程的协同策略,为实现高效、色稳定的PeLEDs开辟了新路径。
在PSC器件制备过程中,极性溶剂处理步骤已被证实可诱导弱吸附SAM分子的脱附。交联后的SAM在极性溶剂暴露下仍保持结构完整性,有效抑制界面缺陷形成,同时增强载流子传输性能并改善钙钛矿薄膜的结晶性。基于此,crs-4PADCB-V器件实现了26.46%的冠军光电转换效率,并在连续光照下进行1000小时最大功率点追踪后,仍保持初始效率的91%。f)基于4PADCB、4PADCB-V与crs-4PADCB-V的PSC在稳态输出下的性能。基于此,采用crs-4PADCB-V的器件实现了26.46%的优异光电转换效率及出色的运行稳定性。
中国石油大学(华东)和青岛理工大学的研究人员报告了一种新的分子桥接策略,以解决钙钛矿太阳能电池中已知的挑战—钙钛矿吸收层和载流子提取层之间埋地界面的接触不良。通过引入氨基磺酸钾作为SnOETL和钙钛矿层之间的桥接分子,该团队在器件效率和稳定性方面都取得了提高。这项工作强调了埋地界面工程在提高PSC性能方面的重要性,并证明像HKNOS这样具有成本效益、结构简单的分子可以在效率和耐用性方面带来显着的提升。
提供了对双重钝化策略的全面评估,强调其在稳定高效钙钛矿太阳能电池中的潜力。b)钙钛矿太阳能电池在钙钛矿/Spiro界面使用金刚烷等离子体聚合物薄膜作为钝化层时的电流密度-电压曲线。双钝化钙钛矿太阳能电池的稳定性提升不仅归因于对潮湿环境的保护作用,还由于缓解了TiO2在紫外光辐射下光催化效应引起的降解。
来自韩国成均馆大学、瑞士洛桑联邦理工学院及韩国化学研究院的联合研究团队,首次揭示了甲脒铅碘钙钛矿薄膜的晶面依赖性降解行为,发现晶面对水分诱导的降解极为敏感,而晶面则表现出优异的稳定性。该成果以“Unveilingfacet-dependentdegradationandfacetengineeringforstableperovskitesolarcells”为题发表于《Science》。未来,结合晶面调控、组分优化与界面工程的协同策略,有望进一步推动钙钛矿光伏技术的商业化进程。
钙钛矿纳米晶图案的微型化对于推动集成芯片级器件和下一代显示技术至关重要。本研究福州大学杨黄浩、复旦大学YihuiSang和聂志鸿等人提出一种聚合物模板原位生长策略,用于制备具有超小像素尺寸和优异环境稳定性的厘米级钙钛矿纳米晶阵列。所获得的纳米晶阵列像素分辨率高达59,325ppi。卓越的环境稳定性:聚合物封装层赋予钙钛矿纳米晶极强的耐水、耐热与耐紫外性能,水中浸泡1000小时仍保持91.8%发光强度,热循环与紫外照射下几乎无衰减。
全无机锡铅卤化物钙钛矿因其接近理想的带隙和优异的光电特性,成为下一代光伏器件中极具潜力的吸收层材料。该添加剂可同时钝化深层缺陷、抑制锡离子氧化、减少碘离子迁移并提升耐湿性,从而显著增强环境稳定性。经处理的钙钛矿薄膜在空气中保持稳定的钙钛矿相,并展现出更优的光电性能。基于该薄膜制备的器件实现了14.2%的功率转换效率,未处理对照组为8.9%,并在惰性气氛下储存3000小时后仍保持94%以上的初始性能。
为应对这一挑战,西北工业大学李祯等人开发了一种利用氟化聚酰胺酸进行原位晶界封装的策略。PIF聚合物在晶界处发生原位聚合,形成贯穿钙钛矿的三维聚合物网络,有效阻隔气体释放通道。引入PIF后,钙钛矿质量得到提升,基于PIF的刚性与柔性钙钛矿太阳能电池分别实现了25.28%和24.42%的光电转换效率。通过进一步引入ITO顶电极和外部封装,器件在1140小时内仅以0.009%/h的极低速率衰减。