相FAPbI3钙钛矿的形成,加速了辐射复合的过程,从而实现了高效的3D钙钛矿。通过在制备过程中引入适量的1-氨基吡啶碘(PyNI)和5-氨基戊酸(5AVA),研究人员成功地提高了钙钛矿的光致发光量子效率
添加剂(如SnF2)来调整薄膜的生长条件,然而,锡空位仍然是含锡钙钛矿中固有掺杂和Sn2+氧化的主要来源之一,因此它们会影响钙钛矿的载流子重组和输运性质因此,随后研究了这些Sn空位对碘离子在
,制备简单,并且更轻薄、高效、低成本,甚至可以是柔性的。人们设想未来可以像刷墙漆一样,将钙钛矿太阳能电池应用在建筑物外墙面,实现供人们使用的绿色电力。甲脒铅碘基钙钛矿(FAPbI3)因其理想的光学带隙
前驱体团簇的大小、中间相的形成、化学成分的类型和含量。溶液状态的改变进一步导致薄膜内部的形貌、晶粒度、结晶度、相纯度和陷阱密度不受控制。同时,这些碘间隙形成深陷陷态,导致更多缺陷引起的复合损失。因此
师范大学赵奎团队引入氟-N,N,N,N-四甲基甲脒六氟磷酸盐(F-(CH3)4CN2PF6,缩写为TFFH)添加剂来解决这个问题,用于高性能FAPbI3(FA=甲脒)基钙钛矿。室内光伏发电。在前
加拿大科学家领导的一个国际科研团队研制出一种光电转化效率创纪录(约为24%左右)的三结钙钛矿太阳能电池,朝着开发出硅基太阳能电池廉价替代品的目标迈进了一大步。相关研究刊发于《自然》杂志。太阳能电池
大部分由超纯硅单晶片制成,生产超纯硅需要耗费大量能源,而钙钛矿太阳能电池由钙钛矿多晶薄膜制成,这些薄膜通过类似于印刷业使用的低成本溶液处理技术涂覆于材料表面。通过改变这些薄膜中钙钛矿晶体的组成,每一层能
,钙钛矿表面生成的产物降低了碘空穴的形成能,并且在表面产生有效的n型掺杂。因为有机分子和碘等容易挥发的物质,导致钙钛矿薄膜的顶部表面容易形成缺陷,因此顶部表面工程对于实现更高效率的p-i-n结构电池非常重要
具有纳米级离子通道且垂直生长的碘化铅晶体结构,这些通道促进了碘甲脒渗透到碘化铅薄膜中,从而快速和稳健地被转化为甲脒基钙钛矿薄膜。陈永华说。 实验结果表明,离子液体甲酸甲胺作钙钛矿前驱体溶剂所制备的器件
甲脒基钙钛矿材料组成的钙钛矿薄膜,其上半部是碘甲脒,下半部分是碘化铅。 陈永华解释道:要实现甲脒基钙钛矿的稳定性,关键在于如何提供牢固的碘化铅结构,而牢固的碘化铅结构第一步就是要制备出成分稳定的碘化
形成钙钛矿结构的前体材料之一)。这也允许铅碘更均匀地溶解在有机溶剂中,从而形成更均匀的钙钛矿薄膜,具有更大的颗粒和更少的缺陷。随后,再将氨从钙钛矿溶液中去除,降低了钙钛矿膜内的杂质水平。 总体而言
PCBM做为电子传输层材料(图1a),提高了光照条件下的准费米能级位置。ICBA还抑制了碘离子迁移带来的n型掺杂,降低了传输层和锡钙钛矿界面的载流子复合。以ICBA为电子传输层的锡基钙钛矿太阳能电池实现