组成的电子-空穴对,这被统称为激子。电子和空穴需要被分离,以产生电流。
实现这一过程的方法是通过创建一个异质结,使两个不同的有机半导体彼此相邻,其中一个失去一个电子,而另一个得到一个电子,这样
可以分裂原有的激子。但是在该领域一个长期存在的问题是,怎样使电子和空穴彻底分离以产生电流,使得能够在大多数太阳能电池中观察到其效率。
在过去的几年中,一个新的视角被提出,即依赖于量子效应的
电子通道上激子(当太阳能电池吸光时产生的能量粒子)在供体和受体的交界处尽可能快的高速运行。这样就意味着,你可以把传统有机太阳能电池中出现的能量损失降到最低。
具有两个结构域,其中包含电子受体与电子供体材料。
当光线被吸入,太阳能电池创造出能源粒子,也被称为激子。为了能够有效运用能源,激子必须快速游至供体与受体区域,尽可能的保留住更多的光线
。
调整受体最高占据之分子轨域(HOMO)与聚合物最低空余分子轨道(LUMO)是一种提升太阳能电池效率的方式,因为激子的受损度最小。
实现这类方式最常见的途径即将氟原子增添进聚合物的分子主链之中,这是
太阳能电池具有两个结构域,其中包含电子受体与电子供体材料。 当光线被吸入,太阳能电池创造出能源粒子,也被称为激子。为了能够有效运用能源,激子必须快速游至供体与受体区域,尽可能的保留住更多的光线
。 调整受体最高占据之分子轨域(HOMO)与聚合物最低空余分子轨道(LUMO)是一种提升太阳能电池效率的方式,因为激子的受损度最小。 实现这类方式最常见的途径即将氟原子增添进聚合物的分子主链之中
,光子在聚合物原子活动,令其溢出电子,遗留下一个空洞科学家们称之为空穴。空穴与电子迅速形成激子(激发性电子)的结合体。随后,激子分裂,独立移向另一个光子创造出来的空穴中。激子这类从一个空穴移向另一个空穴的
薄膜太阳能电池主要有:单层结构的肖特基电池、双层p-n异质结电池以及P型和n型半导体网络互穿结构的体相异质结电池。目前认为有机薄膜太阳能电池的作用过程分为3个步骤:光激发产生激子、激子在给体/受体(D
索比光伏网讯:据报道,美国国家可再生能源实验室(NREL)的研究人员今年年初宣布采用量子点材料制造出了外量子效率(EQE)超过100%的太阳电池,从而证实了多激子产生(Multiple
太阳电池的外量子效率首次突破100%。由于未经优化,电池转换效率仅达到4.5%。虽然效率相对较低,但在该太阳电池光电流中展示了多激子的生成仍然具有重要意义,这一结果为提高太阳电池效率开辟了一条新的路径
Bethe-Salpeter方程,得出二硫化钼中的准粒子能量(电子、空穴和激子)。计算显示,二硫化钼中的准粒子能量对应变非常敏感,其激子能量在材料的强度范围之内可以改变0.7 eV之多。结合经典分子
工作方式,并且可以引领未来效率的提高。聚合物太阳能电池包括两层域,一般称作受体层和供体层。由太阳能电池产生的能量粒子--激子,为了能被用作能量源,必须能快速移动到受体和供体域的界面。科研人员认为
,尽可能保持供体和受体层的纯净,是确保激子能够畅通无阻移动的最好方式,这样可以使太阳能电池捕获最多数目的能量。北卡州立大学的物理学家Harald Ade和他的小组联合英国,澳大利亚和中国的科研团队,共同检验
可以引领未来效率的提高。聚合物太阳能电池包括两层域,一般称作受体层和供体层。由太阳能电池产生的能量粒子--激子,为了能被用作能量源,必须能快速移动到受体和供体域的界面。科研人员认为,尽可能保持供体和
受体层的纯净,是确保激子能够畅通无阻移动的最好方式,这样可以使太阳能电池捕获最多数目的能量。北卡州立大学的物理学家Harald Ade和他的小组联合英国,澳大利亚和中国的科研团队,共同检验其物理结构