溶剂处理获得的高质量钙钛矿膜,抑制缺陷诱导的非辐射复合,从而实现高效的钙钛矿太阳能电池(PSCs)。 由于其具有可调控带隙、低激子结合能、高载流子迁移率和长载流子扩散长度,有机-无机杂化钙
意味着人们可以非常迅速地评估新化合物的性能和商业潜力,显著加快开发过程。 澳大利亚研究委员会(Australian Research Council,ARC)激子科学卓越中心项目负责人亚当思麦克
意味着人们可以非常迅速地评估新化合物的性能和商业潜力,显著加快开发过程。 澳大利亚研究委员会(Australian Research Council,ARC)激子科学卓越中心项目负责人亚当思麦克
。 实现从碳基材料到硅的一种特殊的能量转移,科学家称为自旋三重态激子转移,科学家们介绍了如何通过连接硅纳米晶和蒽的微小化学线打破僵局,这是他们第一次实现预测的能量转移。 科学家表示,目前的挑战是如何从这
,进而与主体聚合物形成一个激子级联。与其他混合架构相比,这导致了更有效的能量传输。 Baek解释说:我们开发的结构可以通过一个附加的有机层实现高的光收集效率,该有机层的背面具有很强的吸收系数,而CQD
有机-无机杂化钙钛矿材料由于具有吸收系数高,激子束缚能低和载流子寿命长,且元素储量丰富和价格低廉等优点,已经迅速成为光电器件研究领域的宠儿。近年来,科研人员采用有机-无机杂化钙钛矿材料作为光吸收层
有机-无机杂化钙钛矿材料由于具有吸收系数高,激子束缚能低和载流子寿命长,且元素储量丰富和价格低廉等优点,已经迅速成为光电器件研究领域的宠儿。近年来,科研人员采用有机-无机杂化钙钛矿材料作为光吸收层
美国研究人员在近日出版的《自然化学》杂志上报告称,他们开发出一种利用单线态裂变来提高太阳能电池效率的新方法。
所有现代太阳能电池板都采用相同的工作原理,那就是一个光子产生一个激子,然后激子转换成
电流。有一些分子可在太阳能电池中实现从单个光子产生两个激子,这一过程被称为单线态裂变。然而,使用这种分子的最大挑战之一是,两个激子的存活时间非常短(几十纳秒),使其难以作为一种电力来捕获。
在美国海军
近年来,有机太阳能电池(OPV)领域取得了迅猛发展,其光电转化效率已经突破了15%,展现了光明的应用前景。从光活性材料的化学结构特点理解OPV中电荷转移机理,特别是低能量损失下激子解离的驱动力来源
提供了激子解离的驱动力,促进了电荷转移,基于此的电池具有高效的电荷生成效率;而在PTO2与富勒烯衍生物受体的界面,ESP的差异相对较小,电荷转移需要额外电场的辅助。
此外,研究人员与瑞典林雪平大学和
同行设计,利用单线态激子裂变原理,加强对高能光子能量的利用。
在太阳能电池中,光子激发材料分子释放电子,产生电流。通常一个光子只能激发出一个电子,高能光子的剩余能量会以热量的形式散失。
此前
人们发现,在并四苯等某些有机材料里,一个分子吸收一个高能光子后,可将部分能量转移给另一个分子,最终产生两个电子,这种现象称为单线态激子裂变。理论上,在硅电池上覆盖一层并四苯,就能用一个高能光子获得两个