斯坦福团队探讨有机光伏电池研究的思维转型

来源:Solarzoom发布时间:2013-12-03 07:49:02
 有机光伏电池一直被誉为刚性硅制太阳能电池板的轻便低成本替代品。近年,有机光伏电池的转换效率得到大幅提升,不过,有机光伏电池究竟如何将太阳光转换为电力——这仍是一个处于“激辩”中的问题。

如今,美国斯坦福大学(Stanford University)研究小组参与到这个话题中。该研究团队于2013年11月17日在《自然材料杂志(journal Nature Materials)》上披露,原先认可的工作原理并不正确,应该将思维精力集中在材料设计上,以此提高有机电池的性能。

斯坦福大学材料科学与工程学院教授(论文作者之一)Michael McGehee表示:“我们都知道,有机光伏电池性能出众。现在的问题是,它们为何如此出类拔萃?——答案仍然具有争议性。”

传统有机太阳能电池由塑料聚合物及其它柔性材料制作的两个半导体层组成。通过吸收光子(光的粒子),电池生产出电力。

当电池将光线吸入,光子在聚合物原子活动,令其溢出电子,遗留下一个空洞——科学家们称之为“空穴”。空穴与电子迅速形成“激子”(激发性电子)的结合体。随后,激子分裂,独立移向另一个光子创造出来的空穴中。激子这类从一个空穴移向另一个空穴的持续行动产生电流。

在这份论文中,斯坦福团队解决了争论已久的一个问题——究竟何种原因导致激子分裂。

斯坦福大学材料科学与工程系副教授Alberto Salleo声称:“要产生电流,就必须将激子与空穴分开——这就需要两个类型各异的半导体材料。倘若相比于材料A,材料B对激子的吸引力更大,那么激子就会游向材料B。理论上,即使掉入某个材料,激子仍与空穴绑定。”

“然而,这个旷日持久的争论焦点就在于这种绑定的状态如何进行分裂?”

热情似火

一种被科学家们广为接受的解释为“热激子效应”理论。该理论认为,从材料A掉入材料B之时,电子携带了额外的能量——该额外能量赋予受激电子足够的速度“逃离”空穴。

不过,斯坦福团队的实验结果并不认可这一假设。
QQ截图20131203074951

斯坦福大学的Koen Vandewal表示,斯坦福科学家们很可能已经解决了“有机光伏电池如何将太阳光线转变为电力”这一旷日持久的争论。问题的核心:究竟是何种原因导致电子 - 空穴对(激子)分离?可能的答案:无序聚合物与有序布基球间界面的自然梯度促使激子分裂,令电子(紫色)逃离,从而产生电流。

“通过研究我们发现,热激子效应并不存在。” Salleo表示,“从半导体材料中,我们测量了光发射。我们发现额外能量并不需要用来分裂激子。”

那么,究竟是什么力量将电子与空穴分开?

“我们尚未对此给出答案。”Sallo解释称,“但我们可以给出一些提示。我们认为半导体材料中塑料聚合物内部的无序排列具有协助电子离开的可能性。”

在近期的研究中,Salleo发现分子水平的无秩序状况确实有助于提高太阳能电池半导体聚合物的性能。通过专注于塑料聚合物的内在无秩序状态,研究人员能够设计出一种新型材料。该新型材料能够将电子从太阳能电池两个半导体层交界的地方“吸”出来。

“值得指出的是,有机太阳能电池交界面处聚合物的无秩序状态更为混乱。” Salleo解释道,“这将导致一种‘自然梯度’的现象——将电子从无序区域吸引到有序区域。”

  提高效率

斯坦福研究小组表示,试验中的光伏电池转换效率约为9%。该团队希望设计出能够利用有序与无序间相互作用优势的半导体材料,提升电池性能。

“为了能够制造出性能更佳的有机太阳能电池,科学家们一直在寻找能够激发更为‘强劲’热激子效应的材料。” Salleo说道,“我们不应该总是偏执于揣摩电子如何在不发热的情况下离开——这一直是极具争议性的。人们就光电流方面的思维应该产生根本性转变。”

注:该论文其它作者:来自斯坦福大学的Koen Vandewal(第一作者)、Erik Hoke、 William Mateker、Jason Bloking及 George Burkhard,来自德国波茨坦大学的Steve Albrecht、Marcel Schubert 及Dieter Neher,来自德国应用光物理研究所(IAPP)的Johannes Widmer及 Moritz Riede,来自美国加州大学伯克利分校的Jessica Douglas 及Jean Frechet,来自沙特阿拉伯阿卜杜拉国王科技大学(KAUST)的Aram Amassian,来自科罗拉多矿业大学的Alan Sellinger以及来自牛津大学的Alan Sellinger。
索比光伏网 https://news.solarbe.com/201312/03/45551.html
责任编辑:shichunhua
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

西安交通大学马伟团队Angew:香豆素基挥发/非挥发性固体添加剂协同作用,助力有机太阳能电池效率突破20.3%!来源:先进光伏 发布时间:2025-12-22 16:27:12

针对这一挑战,湘潭大学、西安交通大学、西安科技大学等多个团队合作设计并合成了两种具有相似骨架的香豆素衍生物固体添加剂:挥发性C5与非挥性C6。结论展望本研究通过精准设计一对结构相似但挥发性迥异的香豆素衍生物添加剂,首次系统比较并揭示了挥发性与非挥发性固体添加剂在有机太阳能电池中的作用机制差异。

四川大学彭强团队NC:溶剂蒸汽扩散驱动多尺度预聚集策略,助力有机太阳能电池突破20.7%效率!来源:先进光伏 发布时间:2025-12-22 16:25:04

论文概览精确调控活性层形貌是提升有机太阳能电池效率的关键,但其复杂性使得实现可重复的最优结构极具挑战。针对此难题,四川大学彭强、徐晓鹏团队创新性地开发了一种溶剂蒸汽扩散策略。实现效率突破:将单结有机太阳能电池效率推升至20.7%以上,跻身世界最高效率行列。结论展望本研究成功开发并验证了一种基于溶剂蒸汽扩散的、用于精确调控非富勒烯受体多尺度预聚集的通用策略。

同济大学材料科学与工程学院陆伟团队关于高熵钙钛矿氧化物材料用于低频电磁波吸收的最新研究成果发表于《科学·进展》来源:钙钛矿材料和器件 发布时间:2025-12-22 13:52:25

论文第一完成单位为同济大学材料科学与工程学院。同济大学陆伟教授与袁宾研究员为论文通讯作者。陆伟教授团队以电磁功能材料为主要研究对象,在多功能集成电磁防护材料等方向进行了系统性研究。在国家重点研发计划、国家自然科学基金等项目的支撑下,近期多项电磁防护材料研究成果发表于高水平期刊。

常州大学朱卫国Advanced Materials:通过挥发性形态导向器的双相调控使阱抑制有机太阳能电池效率达到20.6%来源:先进光伏 发布时间:2025-12-18 11:07:59

针对这一问题,常州大学朱卫国课题组提出了一种基于挥发性固体添加剂1,3-二溴-5-碘苯的双相协同调控策略。该研究以“Dual-PhaseRegulationviaaVolatileMorphologyDirectorEnablesTrap-SuppressedOrganicSolarCellswith20.6%Eciency”为题发表在顶级期刊AdvancedMaterials上。径向分布函数与FT-IR光谱进一步证实了DBI优先与PM6的给体骨架发生非共价相互作用。时间演化分析显示适量DBI可促进PM6预聚集并同时抑制Y6的过度聚集。IR-AFM形貌图直观证实,适量DBI诱导形成了清晰、互穿的双连续相分离结构,而过量添加剂则导致相边界模糊、形成孤立域。

山东大学高珂AM:铂-复合物接受体调节介电常数和激子-振动耦合,适用于高效有机太阳能电池,且能量损失降低来源:先进光伏 发布时间:2025-12-18 11:05:22

针对这一痛点,山东大学高珂团队联合多所高校设计合成了一种铂配合物基非富勒烯受体,通过分子结构调控实现介电常数提升与激子-振动耦合抑制的双重目标。研究意义能量损失调控新策略:通过金属配合物受体同时调控介电常数和激子-振动耦合,为降低OSC电压损失提供了明确的分子设计思路。通过FTPS-EQE与电致发光谱进一步量化了各损失分量,证明PH1D通过提升介电常数和抑制激子-振动耦合,是实现低能量损失的关键。

Nat Commun:有机太阳能电池突破20%效率!稠环异构化调控非卤化有机太阳能电池的分子堆积与器件性能来源:知光谷 发布时间:2025-12-17 11:19:27

分子骨架几何结构的微小变化影响有机太阳能电池中的分子间相互作用与性能。本文香港理工大学罗正辉等人研究了三种异构小分子受体,以揭示不同稠环构型如何调控分子堆积、电子耦合和薄膜形成。原位光学测量显示,NaO1在成膜过程中促进快速且连续的结构演化,形成平滑的形貌和均匀的相分布。我们的研究结果凸显了稠环异构化如何决定有机太阳能电池中结构-堆积-性能之间的关系。

AFM:利用聚合物添加剂调控分子取向,实现效率达20.2%的双层有机太阳能电池来源:知光谷 发布时间:2025-12-15 18:11:01

在有机太阳能电池中,将分子堆积从边缘取向调控至更优的面取向有利于改善垂直电荷传输和光伏性能。然而,由于加工条件复杂,实现这一结构转变的精确控制仍面临重大挑战。

大阪大学Akinori Saeki团队Angew:手性双面非富勒烯受体实现自旋选择性,推动有机太阳能电池性能突破来源:先进光伏 发布时间:2025-12-13 00:29:01

不对称分子设计是提升非富勒烯受体(NFA)性能的有效策略之一,但以往研究多集中于横向(左右)不对称性。大阪大学Akinori Saeki团队创新性地提出了双面不对称(bifacial)的手性分子设计策略,合成并研究了基于茚并二噻吩(IDT)核心的手性NFA分子:(S,S)-IE4F与(R,R)-IE4F。该设计不仅在垂直方向引入偶极矩,还赋予分子手性,首次在有机太阳能电池(OSC)的体异质结中实现了显著的手性诱导自旋选择性(CISS)效应(自旋极化率高达~70%)。基于纯手性分子构筑的OSC器件取得了8.17%的光电转换效率,是其非手性异构体(meso-IE4F,效率2.36%)的三倍以上。该研究以“Chiral Bifacial Non-Fullerene Acceptors with Chirality-Induced Spin Selectivity: A Homochiral Strategy to Improve Organic Solar Cell Performance”为题发表在《Angewandte Chemie International Edition》。

中南大学邹应萍团队AM:通过构象锁定大环受体实现高光致发光量子产率,推动大环受体体系效率突破17%来源:先进光伏 发布时间:2025-12-13 00:24:40

传统有机太阳能电池(OSCs)中,非辐射复合损失严重制约了其效率提升。近年来,大环π共轭结构因其可抑制分子振动、增强发光特性而备受关注,但其聚集行为往往不利于电荷传输。中南大学邹应萍团队 设计并合成了系列构象锁定的环状受体分子RCM-C6、RCM-C5、RCM-C4,通过调控烷基链长度优化分子平面性与堆积行为,在显著提升光致发光量子产率(PLQY > 14%)的同时,实现高效电荷传输,最终构筑出效率高达17.1%的OSC器件,创下大环受体体系效率纪录。该研究以“Conformationally Locked Macrocyclic Acceptors with Enhanced Photoluminescence for High-Efficiency Organic Solar Cells”为题发表于《Advanced Materials》。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。