solar cells with certified efficiency
27.35%”为题发表在顶级期刊Nature Energy上。研究亮点:缺陷钝化失败抑制:研究团队开发了一种新方法来抑制钙钛矿
:这项工作提供了一种通过控制钙钛矿材料的结晶过程来提高太阳能电池效率和稳定性的新方法。推动产业化进程:这种抑制缺陷钝化失败的技术为钙钛矿太阳能电池的商业化和大规模生产提供了新的可能性,有助于推动绿色能源
P2EH-1V 的不对称非富勒烯受体(NFA),它“显着”增加了近红外(NIR)光的吸收。该方法使用单侧共轭 π 桥将器件的光学带隙降低到1.27 eV,同时保持“理想”激子解离和纳米形态
助于减少能量损失,提高电池的整体性能。研究意义:性能提升:这项工作提供了一种通过分子设计来提高钙钛矿太阳能电池效率和稳定性的新方法。推动产业化进程:这种新型NFA技术为钙钛矿太阳能电池的商业化和大规模生产
近日,国家知识产权局官网显示,嘉兴阿特斯技术研究院有限公司、苏州阿特斯阳光电力科技有限公司申请一项名为“
HBC电池及其制备方法”的专利,申请日期为2023年12月,公开
号CN120224789A,申请公布日为2025年6月27日。摘要:本发明揭示了一种HBC电池及其制备方法,所述HBC电池包括:硅片;异质结构,包括层叠于第一区域上的第一钝化层及第一掺杂层;第一电极结构,位于异质结构中的第一
(DIM)钙钛矿太阳能电池(PSCs)的奈奎斯特图。d) 整体设计方法的图示。F-BHI 封端的钙钛矿与 C60 和
Me-2PACz 均形成良好连接。红色光晕表示 π-π 相互作用;浅黄色虚线
代表载流子传输路径。e) 9-YT 中官能团与 MeO-2PACz 之间 π-π
相互作用的示意图。图 9. a) 钙钛矿薄膜剥离方法示意图。b) MTIm 渗透晶界并在双界面形成 1D 钙钛矿的
影响在设计阶段即已决定,因此可持续的EoL设计亟需融入器件初期开发。二、研究内容与方法1. 回顾钙钛矿电池架构与特性探讨常见的 N–I–P / P–I–N 结构、钙钛矿/硅叠层(P-S)、钙钛矿/钙钛矿
区间、更可靠的质量承诺和更优的物料利用效率,可以直接提升生产效益和产品竞争力。最后,晶澳实验室在测量精度上的经验和方法论,有助于推动行业测量标准的进一步完善和统一,促进产业链上下游数据互认,减少因测量
溶液加工中SAM层均匀性。虽然共组装或溶剂工程可改善均匀性(15,
16),但这些方法会显著增加SAM层制备的复杂度。双自由基结构引入或者自由基掺杂引入稳定开壳层双自由基结构的新型策略展现出独特
能精确评估SAMs实际稳定性与分子密度的表征方法。研究内容作者基于给体-受体(D-A)共平面共轭策略,成功设计合成了两种开壳层双自由基SAMs。通过强D-A相互作用与刚性共平面共轭的协同效应,这些分子
侯毅等人提出了一种基于羟基化刻蚀的解决方案,可在15秒内实现氧化铟锡(ITO)的完全羟基化,并暴露丰富的未配位铟离子作为SAM的新键合位点。通过形成配位键,SAM的锚定稳定性大幅提升。此外,该方法还能
核心关键手段,没有通信,信息化、数字化、智能化都无路可行。不认真对待通信网,通信就会成为电网的瓶颈,从而阻碍新型电力系统建设与发展。引入通信目标网方法论只有高效的通信体系,才能让数字化、智能化触手可及