表面缺陷钝化对于提高钙钛矿太阳能电池的效率和稳定性至关重要。然而,其可重复性和普遍适用性尚未得到充分探索,这限制了大规模生产。鉴于此,2025年6月9日西湖大学Rui
Wang等于NE发文,介绍
异丙醇和异丙醇的混合溶剂冲洗,可去除多余的钝化剂分子。该策略具有较宽的工艺窗口,对钝化剂浓度的偏差具有较高的容忍度,并且适用于各种器件结构、钙钛矿成分和器件面积。这种方法能实现高功率转换效率,并有潜力提高工业制造中的可扩展性和生产良率。
柔性钙钛矿基单结和串联太阳能电池的功率转换效率(PCE)已分别超过25%和29%,被认为是便携式和可穿戴光电子器件(包括建筑一体化光伏应用)的理想选择。与其他薄膜技术和主流硅技术相比,钙钛矿薄膜
可通过低温工艺和基于溶液的卷对卷制造制备,具有优异的功率重量比和高成本效益。尽管取得了这些进展,但柔性钙钛矿太阳能电池(f-PSCs)的商业化仍受到与器件配置中每一层相关的若干挑战的限制,包括钙钛矿活性层
表面缺陷钝化是提高钙钛矿太阳能电池(PSCs)效率和稳定性的关键,但其重复性和普适性尚未充分探索,限制了大规模生产。本文西湖大学王睿和浙江大学薛晶晶等人提出了一种基于氟化异丙醇(FIPA)的钝化策略
去除过量钝化剂。该策略具有宽泛的工艺窗口,对钝化剂浓度偏差具有高容忍度,适用于多种器件结构、钙钛矿组分和器件面积,最终实现了高功率转换效率(PCE),有望提升工业生产的可扩展性和良率。研究亮点1.创新
高性能钙钛矿太阳能电池需要协同钝化策略来解决电子传输层(ETL)/钙钛矿界面的缺陷,这些缺陷会影响效率和长期稳定性。鉴于此,浙江大学刘鹏&高翔院士&浙江工业大学潘军&西湖大学王睿于
Chloramine Hydrochloride Molecular
Bridges”通过氯胺盐酸盐分子桥实现钙钛矿太阳能电池的协同双界面工程的研究成果,本研究引入氯胺盐酸盐(CAH)——2-氯乙胺
改进导致钙钛矿太阳能电池的功率转换效率高达26.4%,钙钛矿组件的效率为23%,碳基钙钛矿电池的效率为23.1%。在这种新方法中,抑制簇聚集路径涉及故意引入相对于常规方案过量的配体分子。这些配体与锡离子
。这种沉积方法的快速性标志着额外的工业优势。传统的CBD技术需要更长的持续时间才能实现覆盖均匀性,这是迈向制造规模的主要瓶颈。通过改变反应途径动力学,过量配体策略可压缩处理时间,而不会牺牲薄膜质量或
电子传输层(ETL)是钙钛矿太阳能电池(PSCs)的关键组件,极大地影响着其光伏性能。鉴于此,洛桑联邦理工学院Michael Grätzel、Paul
J. Dyson、Ursula
。2、规模化制备与稳定性优化:开发适用于大面积涂层的多巴胺 SAM
沉积技术(如喷涂、气相沉积),解决当前浸涂法在工业生产中的局限性;结合封装技术,研究多巴胺 SAM 对长期湿热、紫外老化环境的防护机制,推动高稳定性 PSCs
的商业化进程。
形成具有低晶界缺陷的单片钙钛矿晶粒对于实现高性能钙钛矿太阳能电池至关重要。在底面引入二维(2D)钙钛矿晶种是一种简便易行的方法,可诱导向上定向结晶并形成单片晶粒。然而,二维钙钛矿中的大分子有机阳离子
会阻碍底部界面处的载流子传输。鉴于此,南京工业大学王贞&王建浦在期刊《ACS
Energy Letters》发文,题为“Heterogeneous Nucleation-Induced
的风车,一座一座怒指天云;另一个就是硅基太阳能电池板,一片一片匍匐于地,为黎民百姓收集阳光与温暖。不过,单晶硅电池也不是没有问题。从产业化角度看,面临的挑战是生产成本高、制备工艺复杂、能耗高、且会造成
电阻损耗。图 2. 不同类型太阳能电池的光电转换效率和器件面积的倒置关系 (trade - off curves)。From Nat. Rev. Mater.
3(4), 1-20 (2018)。成本
cm²)全印刷钙钛矿太阳能电池模块,认证效率达24.30%(小面积器件效率24.46%),突破了无掺杂HTL在大面积印刷中的效率瓶颈。模块表现出优异的重复性和稳定性,为工业化生产提供了可行方案
实现大面积、高均匀性和高重复性的无掺杂有机空穴传输层(HTL)沉积,是推动全印刷n-i-p钙钛矿太阳能电池组件商业化的关键。然而,传统聚合物空穴传输材料(HTM)在印刷过程中表现出非牛顿流体特性,其
和(D)分离的器件的ETL层中的EDX绘图。(E和F)静置的(E)原始和(F)分离的器件的ETL层上的SEM图像。总之,作者成功地开发了一种蒸汽辅助表面重构策略,实现了工业规模钙钛矿太阳能电池组件的
发表在顶级期刊Science上。近日,蒸汽辅助策略,再次被应用于大面积钙钛矿模组的稳定制造上,相关成果于science发表。文章介绍在自然光照条件下,光暗循环会导致钙钛矿太阳能电池中离子的不可逆迁移