据报道,美国科学家设计了一种微导线太阳能电池,可以实现单线态裂变与硅的耦合。他们取得成就的关键是一个界面,该界面将电子和空穴依次转移到硅中,而不是同时将两者转移到硅中。太阳能电池示意图图片
: 麻省理工学院, Joule麻省理工学院(MIT)的科学家们利用一种被称为单重态激子裂变(SF)的效应,展示了一种新型硅太阳能电池概念,该概念有可能超过传统光伏器件的量子效率极限。单重态激子裂变是在某些材料
钙钛矿太阳能电池性能的关键在于有效抑制钙钛矿/C60界面的非辐射复合。本研究创新性地采用1,6-双(丙烯酰氧基)-2,2,3,3,4,4,5,5-八氟己烷(简称BA-8FH)作为钙钛矿/C60界面的多功能
%,处理组23.57%),并列示Vmpp与Jmpp参数。器件制备钙钛矿太阳能电池制备基底处理:图案化ITO玻璃依次在超声浴中用洗涤剂、去离子水、乙醇和丙酮各清洗15分钟。紫外臭氧(UV-Ozone)处理
因子(Fill Factor,
FF)是衡量太阳能电池性能的关键电学参数之一。填充因子与太阳能电池的功率转换效率成正比(填充因子越高,效率越高)。它可以通过最大功率与短路电流Isc和开路电压Voc
演进与改进,这项研究有助于开发直接从发光图像中提取填充因子的方法。这篇论文的核心内容可以概括为:研究动机:提高对现代工业太阳能电池**填充因子(FF)**预测的准确性,FF是衡量太阳能电池性能的重要
近日,日本东京城市大学的研究人员成功制造出一种可弯曲的钙钛矿 -
硅叠层太阳能电池,其转换效率达26.5%,这一成果成功刷新了柔性钙钛矿 - 硅叠层太阳能电池的效率纪录。图源网络此次日本东京
城市大学研究团队制造的可弯曲钙钛矿 -
硅叠层太阳能电池,结构独特且复杂。它由底部可弯曲的薄膜异质结电池和顶部通过低温工艺制造以防损坏的钙钛矿电池组成。这种分层设计结合了两种电池的优势,既保证了电池的
》国家重点专项项目,由天合光能作为项目牵头单位,联合一道新能、中国科学院上海微系统所、浙江大学、隆基绿能、中山大学、长三角太阳能光伏创新中心等单位共同组织实施。常州市副市长蒋鹏举等领导,南开大学赵颖教授、江苏
-材料-器件-工艺及装备-组件”设置
5 个研究课题,其中一道新能是课题五“高功率稳定耐候光伏组件关键制备技术研究”的牵头单位,联合天合光能、长三角太阳能光伏创新中心等单位共同完成。项目课题5汇报
近日,山东大学化学与化工学院于伟泳教授联合学院李培洲教授和鲁东大学张树芳教授,在钙钛矿太阳能电池研究中取得新进展,提出了金属化卟啉基共价有机框架作为钙钛矿底部界面的导电多孔层提升功率转换效率和环境
博士研究生何正言与博士后栾天翔为共同第一作者。在钙钛矿太阳能电池中,中间层作为连接电子传输层与光活性层之间的关键部分起到了至关重要的作用。它不仅能优化钙钛矿薄膜的结晶质量,还能有效提升载流子的提取效率
键因素。值得注意的是,随着铵基团旋转灵活性的提高,钙钛矿太阳能电池性能呈现出持续的提升。详细的载流子动力学分析揭示了分子构象自由度与缺陷钝化效果之间的直接相关性。理论计算表明,静态几何匹配和动态构象对钙钛矿
钝化剂的分子结构工程已被证明是开发高性能钙钛矿太阳能电池的关键策略。尽管先前的研究主要集中在分子构型设计上,但分子构象对器件性能的影响仍未得到深入研究。鉴于此,2025年5月12日浙江大学陈红征&左
法规要求,为公司深化欧洲市场布局及加速全球化战略进程提供了坚实技术后盾与权威资质保障。阿特斯储能全球业务发展总经理Matt
Paterson、TÜV莱茵全球电力电子产品服务副总裁兼大中华区太阳能与商业
、安全且具可持续性的储能解决方案。此次认证不仅验证了SolBank
3.0的电池性能、制造工艺、能效表现、安全等维度的卓越性,更彰显阿特斯储能在全生命周期管理领域的领先实践——从原材料溯源到退役电池
同时,内应力更小,电池隐裂风险下降30%,组件可靠性更优。TNC2.0组件采用优选钝化材料对电池激光切割侧面进行处理,修复电池切割边边缘缺陷,电池性能显著提升。通过使用特殊设计的钢板,替代传统的丝网
兼大中华区太阳能与商业产品服务副总裁李卫春,向通威颁发《IEC TS
62994:2019》全生命周期环保认证 、MCS认证,邢国强博士代表通威领取证书。《IEC TS
62994:2019
钙钛矿/硅叠层太阳能电池作为新型光伏器件,因其显著提升的效率(钙钛矿/硅叠层电池效率已突破30%)近期受到广泛关注,但固有刚性限制了其柔性应用。近期突破性研究表明,通过硅衬底减薄可制备稳定柔性硅
分布式能源发展。2025年4月13日,日本东京都市大学Ryousuke Ishikawa等于Solar
RRL刊发高效柔性钙钛矿/硅叠层太阳能电池的最新研究成果。该研究通过将钙钛矿太阳能电池制备在可