硅-钙钛矿叠层电池的竞争技术出现: MIT科学家开发基于单重态激子裂变的硅太阳能电池

来源:钙钛矿材料和器件发布时间:2025-05-28 09:52:53

据报道,美国科学家设计了一种微导线太阳能电池,可以实现单线态裂变与硅的耦合。他们取得成就的关键是一个界面,该界面将电子和空穴依次转移到硅中,而不是同时将两者转移到硅中。

太阳能电池示意图图片: 麻省理工学院, Joule

麻省理工学院(MIT)的科学家们利用一种被称为单重态激子裂变(SF)的效应,展示了一种新型硅太阳能电池概念,该概念有可能超过传统光伏器件的量子效率极限。

单重态激子裂变是在某些材料中看到的一种效应,其中单个光子在被太阳能电池吸收时可以产生两个电子-空穴对,而不是通常的一个电子-空穴。早在1970年代,科学家们就已经观察到这种效应,尽管在过去十年中它已成为一些世界领先机构的重要研究领域;事实证明,将这种效应转化为可行的太阳能电池是复杂的。

单线态裂变太阳能电池可以从一个光子产生两个电子,使电池效率更高。这是通过量子力学过程发生的,其中一个单重态激子(电子-空穴对)被分成两个三重态激子。

“到目前为止,我们只有间接证据可以将单线态激子裂变与硅耦合,”该研究的通讯作者 Marc A. Baldo告诉 pv magazine。“对我们来说,突破是设计了一个界面,将电子和空穴依次转移到硅中,而不是同时将两者(电子和空穴)转移到硅中。”

在最近发表在 Joule 上的研究“激子裂变增强硅太阳能电池”中,研究人员解释说,他们设计并构建了一种微导线 (Microwire, MW) 电池,其界面基于铪氧氮化物(HfOxNy)薄膜,以改善并四苯(Tetracene, Tc)和硅之间的耦合。Tc及其衍生物是SF的主要候选物,因为它们可以形成电荷转移和多激子态。

该界面还包括一种薄的氧化铝(AlOx)钝化层,防止转移的电荷载流子在硅表面立即重新组合,以及作为电子供体材料的锌酞菁(ZnPc)层。“为了最大限度地减少背面的复合,添加了一个结深为1 μm的背表面场(BSF)层和一个局部背接触,”科学家们说。“微网格电极用作前电极,以有效地收集载流子。”

研究人员对电池性能进行了一系列测量,发现在器件上沉积ZnPc和Tc会改变短路电流密度,开路电压和填充因子的降低可以忽略不计,从而导致功率转换效率的整体提高。

分析还表明,并四苯中吸收的每个光子的峰值电荷产生效率约为138%,科学家们表示,这“轻松”超过了传统硅太阳能电池的量子效率极限。

“这项技术将与硅-钙钛矿叠层等双结概念电池竞争,”Baldo解释说。“将激子裂变与硅相结合避免了电流匹配限制,并且该方法保证了在不同照明下的稳健性和单结典型的简单性,它还有很长的路要走。最重要的是,我们需要提高效率并证明该技术可以在阳光下保持稳定。

Baldo总结道:“观察到硅太阳能电池中激子裂变产生的光电流证明了与单线态激子裂变耦合是提高硅太阳能电池效率的可行途径这一概念。“我认为现在可以宣称,激子裂变是新太阳能电池技术竞争中真正的技术竞争者。”

2023 年,麻省理工学院和弗吉尼亚大学的研究人员宣布计划在单线态裂变太阳能电池中使用并苯,并苯是具有独特光电特性的苯分子。他们的方法包括将碳二卡宾配体添加到已经掺杂了硼和氮的并苯中。

2019 年,麻省理工学院的另一个研究小组展示了如何将单线态激子裂变应用于硅太阳能电池,并可能导致电池效率高达35%。他们声称自己是第一个从已知表现出这种效应的“激子”材料中转移效应的群体,在这种情况下,还有并四苯。他们通过在硅太阳能电池和激发子并四苯层之间放置一个只有几个原子厚的氮氧化铪的额外层来实现这一壮举。

麻省理工学院的研究人员将他们的工作描述为“涡轮增压”硅太阳能电池,并表示这与提高太阳能电池效率的最常见方法不同,后者如今更侧重于叠层电池概念。“我们正在向硅中添加更多电流,而不是制造两个电池,”他们当时表示。

索比光伏网 https://news.solarbe.com/202505/28/389700.html

责任编辑:zhouzhenkun
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
“钙钛矿”亮相党的创新理论专题学习片!极电光能以“产学研用”深度融合,攀登能源新高峰来源:极电光能 发布时间:2025-12-10 11:08:18

在最新一期中,专题片聚焦光伏领域新质生产力的杰出代表——极电光能,深度解码了其以“产学研用”深度融合模式,引领钙钛矿光伏技术从实验室走向产业化的创新实践。“当前,钙钛矿技术正处于基础研究与产业化技术平行推进的阶段。”面向未来,极电光能表示将继续深化产学研用融合,以人才驱动创新,以创新引领产业,在钙钛矿这一前沿领域奋力攀登,为高质量发展新质生产力注入更多“极电动能”。

华东师范大学李晓东、方俊峰AM: ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层自组装来源:先进光伏 发布时间:2025-12-10 09:51:37

论文概览近年来,倒置钙钛矿太阳能电池在自组装分子使用方面效率迅速提高。技术亮点锚定强化:引入富羟基ITO纳米颗粒作为中间层,通过稳固的化学键合有效“锁住”自组装分子空穴传输层,从根本上抑制其在溶剂处理与长期运行中的脱附问题。通过计算P/Sn元素比,进一步评估了PSCs老化过程中SAM的脱附情况。如图4a所示,ITO/INPs/SAM基底上的钙钛矿显示出比ITO/SAM基底上的更强的PL猝灭,表明孔导电性更高,这归因于在钙钛矿涂覆过程中抑制了SAM的脱附。

青岛大学张安东、路皓、欧阳丹和北京师范大学薄志山等人JACS :通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:先进光伏 发布时间:2025-12-10 09:49:47

光学带隙测试结果表明,Rh-Py的带隙为2.63eV,其他CILs则分别为2.91eV、2.84eV和3.06eV。进一步实验表明,Rh-Py由于其强分子内偶极矩,能够显著调节银电极的功函数,而其他CILs如TZD-Py、Rh-Th和Rh-Ph则显示出较小的调节作用。这项研究将Rh-Py作为反溶剂添加剂应用于钙钛矿太阳能电池,以实现界面缺陷钝化和能级调节。

东华大学AFM:蒸汽辅助无损封装策略实现高效空气处理钙钛矿太阳能电池的全生命周期调控来源:知光谷 发布时间:2025-12-10 09:47:36

本文东华大学王宏志和张青红等人开发了一种无损封装策略,以实现空气处理PSCs的全生命周期管理。本工作为空气处理PSCs的全生命周期管理提供了一条有前景的途径。

AEM:原位双区域选择性锚定两性离子凝胶实现高效且机械耐用的柔性钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-10 09:46:24

在室内光照条件下,VIPS修饰的柔性器件效率超过40%。

直面TOPCon技术挑战:来自一线的深度洞察来源:PV光圈见闻 发布时间:2025-12-10 09:25:02

由于TOPCon等技术确实存在质量与耐用性问题的风险,组件买家应尽可能向制造商施压,要求其确保质量,KiwaPIBerlin的StevenXuereb表示。Xuereb指出了随着TOPCon技术凸显的最紧迫问题之一——紫外线诱导衰减。Xuereb指出,从有限的现场数据中得出定论,并将可能发生的TOPCon特有性能问题与其他类型的衰减区分开来,这两项工作都存在挑战。在此期间,KiwaPIBerlin及其他检测机构正在调整测试方案,以应对TOPCon技术的特有挑战。

金泽大学实施钛矿太阳能电池的铅稳定技术实地测试来源:钙钛矿材料和器件 发布时间:2025-12-09 16:18:43

东芝能源系统公司主导该项目,长州工业株式会社、电通信大学和金泽大学共同实施。该试验涉及将叠层的钙钛矿太阳能电池与铅稳定技术集成到户外测试模块中。该活动计划于2025年8月8日至2026年12月举行。

复旦大学赵岩&王洋&梁佳Nat Energy:厘米级无富勒烯锡基钙钛矿太阳能电池实现14.51%认证效率来源:知光谷 发布时间:2025-12-09 14:33:49

富勒烯基电子传输层常用于锡基钙钛矿太阳能电池以实现高功率转换效率,但其存在成本高、合成复杂、电子迁移率低以及与钙钛矿相互作用有限等问题。该研究展示了非富勒烯ETL在锡基钙钛矿光伏中的潜力。研究亮点:高效率与大尺寸兼备:采用非富勒烯ETL材料P3,实现了小面积16.06%和大面积14.67%的高效率,且均通过第三方认证,为锡基钙钛矿太阳能电池的大面积化提供了可行路径。

朱宗龙等人EES:金属茂盐作为可调控掺杂剂提升钙钛矿太阳能电池效率来源:知光谷 发布时间:2025-12-09 14:14:09

我们揭示了掺杂机制,并证明此类掺杂剂可将钙钛矿/OSC异质结处的空穴提取效率提升45%。使用金属茂盐掺杂剂的钙钛矿/OSC光活性层,相比使用传统LiTFSI基掺杂剂的薄膜,对湿气诱导降解的耐受性显著增强。显著增强器件界面稳定性与空穴提取金属茂盐掺杂剂及其反应副产物中性二茂铁能有效钝化钙钛矿表面,诱导能带弯曲并形成表面杂化态,从而提升空穴提取效率。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。