效率,位居无溶剂制备器件中最高的水平,同时还表现出显著提高的稳定性。令人鼓舞的是,大面积PVSC(1 cm²)实现了高达24%的优异PCE。这项研究为优化可扩展和可打印PVSC的无溶剂制备工艺提供了一种可靠的策略。
空穴提取能力的提升,器件稳定性也得到改善,在 ISOS-L-2 协议(65°C)下进行 1200 小时最大功率点(MPP)跟踪后,仍能保留约
90% 的初始效率。一、研究背景与目的倒置钙钛矿
PSCs 的外量子效率(EQE)和集成短路电流(Jsc)曲线。图 5. 器件稳定性(A) 未封装的 P3CT-TBB 基和 P3CT 基钙钛矿太阳能电池(PSCs)在 65°C
连续光照下进行最大功
器件取得了突破性进展。有别于传统的SAM材料在咔唑的氮原子上引入膦酸锚定基团,研究人员在咔唑核的苯环侧引入膦酸锚定基团,提出了一种具有非对称结构的自组装分子(HTL201),作为宽带隙钙钛矿子电池的空穴
了一种具有开壳双自由基的新型有机自组装分子。该分子展现出优异的载流子传输能力、在实际工况下的优异结构稳定性以及卓越的组装均匀性,使得基于该材料的钙钛矿太阳能电池在效率和稳定性方面均取得了显著进展。相关
意大利的研究人员正在解决两个金属卤化物钙钛矿太阳能光伏挑战,减少铅的使用并延长功率转换效率的稳定性,采用微聚光器和皮秒激光加工的新型组合。皮秒激光图案样本 热那亚大学来自热那亚大学和罗马大学 Tor
团队在2.5 × 2.5
厘米的小面积器件中看到了积极成果。与传统方法相比,“该设计提供了显著的改进”,“研究项目负责人 Shiva Navazani 告诉pv
magazine。该项目的最初
%,电压为1.36V,对应的电压损失为0.44V。重要的是,处理后的器件表现出出色的运行稳定性,在氮气氛围中连续光照下进行最大功率点跟踪300小时后,仍能保持其初始效率的95.7%。通过将这种无机钙钛矿顶
潜在的耐高温无机钙钛矿/硅串联太阳能电池(TSC)是有望突破单结硅电池效率极限的器件。然而,不良的非辐射复合通常会导致显著的电压损失。鉴于此,2022年6月28日南开大学Xiaodan
光电压(TPV)衰减特性。图4. 具有缓冲层的PSC的光伏性能和稳定性。a BCP和PEI/PDMEA基器件的J-V曲线。B BCP和PEI/PDMEA器件的PV参数统计。方c
BCP和PEI
。其涉及通过刘易斯酸-碱反应原位交联具有不同官能度的聚合物,可以激发用于PSC和其它电子器件中的界面稳定性和良性电子性质的稳健缓冲剂的化学设计。器件制备器件制备:ITO/SAM/PVSK/PC60BM
钙钛矿电池的材料体系、制备工艺、器件结构以及稳定性等方面进行系统性优化与验证,为实现钙钛矿太阳电池的商业化应用奠定坚实基础。本项目通过提供生产设备,优化生产工艺、设计高效的生产流程以实现稳定的中试线产能
,和认证的功率转换效率为29.88%(稳态29.2%,1.04 cm
2孔径面积),超过所有其他类型的柔性钙钛矿基光伏器件。该研究结果可以导致广泛的应用和商业化的柔性钙钛矿/c-硅串联光伏器件。该
%的认证功率转换效率。稳定性增强:电池在连续照射1200小时后仍能保持85.3%以上的初始效率。研究内容:该研究专注于通过控制钙钛矿材料的结晶过程来提高柔性钙钛矿/硅单片叠层太阳能电池的性能。科研团队
商业化瓶颈。掩埋界面的关键作用SnO₂作为电子传输层(ETL),其表面氧空位(V₀)和羟基会导致非辐射复合;钙钛矿自上而下结晶使掩埋界面缺陷密度高于顶面,影响器件性能和稳定性。现有问题多数界面修饰材料易被
薄膜(ARTF)的器件的 J-V 曲线。e)
效率的统计分布,f) 稳定性跟踪测试(25±5°C;相对湿度 25±5%),以及 g) 相应器件在 1 个太阳条件(100 mW・cm⁻²,AM 1.5
8-BO体系相比,PCE显著提高20.3%。L 8-BO器件(18.8%)。值得注意的是,PCE也是无添加剂的OSC的最高值之一。优化的器件还表现出优异的光稳定性,在连续光照1200小时后仍保持