银浆料、低温共烧陶瓷和片式多层陶瓷电容器等核心元器件用金浆料、生物医用金(银)材料、电接触金(银)及合金材料、环境友好型金基催化剂等材料质量提升和推广应用。通知还指出,强化资源绿色高效利用。按照“源头减量、过程
下游用户,提升高端新材料产品质量稳定性和一致性,开展应用 评价,提高有效供给能力。( 工业和信息化部、 国家发展改革委按职责分工负责)专栏3高端新材料攻关和应用重点方向高端新材料攻关:高精密金及金合金
调节这些分子的聚集行为,从而提高受体材料的光致发光量子产率 (PLQY)
值并减少相应器件中的非辐射复合电压损失。我们的研究结果表明,降冰片烯单元的引入有效地抑制了过度的分子聚集,并显着提高了受体
分子的 PLQY
值。进一步的研究表明,只有同时具有高 PLQY 和中等结晶度的受体分子 LLZ1
才能在降低器件中的电压损失和增强电荷传输的双重要求之间取得最佳平衡。利用首选分子 LLZ1
Me-TPCP的倒置PSC器件效率达到25.62%,显著高于对照组器件(23.85%),同时表现出卓越的紫外线稳定性、操作稳定性和热稳定性。研究亮点分子设计创新:通过引入苯基和噻吩基团增强π共轭效应,显著提升
、缺陷多,器件的开路电压(VOC)损失大、稳定性差。虽然已有研究尝试通过添加Lewis碱或改变溶剂类型来调控晶化过程,但成本高、操作复杂,难以规模推广。二、实验方法概述本研究采用DMSO气相熏蒸的方法,在
结合TOPCon后电池构建单体结构叠层器件,认证效率达30.83%;EQE光谱匹配良好,有效电流协调;器件在常温暗态存储2000小时后仍保持90%初始效率,显示良好长期稳定性。四、技术创新点总结首次引入
克服“噪音”难题,以精准策略填补市场空白。SDT
G4引入碳化硅器件,降低损耗为机器散热减负,通过优化散热结构与独家降噪技术,运行噪音低至45db以下,静享清洁能源带来的惬意生活。固德威始终致力于
技术创新为引擎,推动包括低噪音技术在内的产品性能持续升级,不断提升储能及新能源应用的稳定性与可靠性,为全球能源绿色低碳转型贡献坚实力量。”TÜV莱茵全球电力电子产品服务副总裁兼大中华区太阳能与商业产品服务
TiO2因其合适的能带结构、简便的制备工艺和高温稳定性而被广泛用作钙钛矿太阳能电池中的电子传输层(ETL)。与其他方法相比,化学浴沉积(CBD)法能够在低温条件下制备均匀的TiO2薄膜。然而,在沉积
过程中,剧烈的水解反应和反应中间体会导致大团聚颗粒和氧空位的形成,从而导致TiO2
ETL性能不佳和器件性能低下。鉴于此,北航刘慧丛,陈海宁课题组在期刊《Advanced Functional
效率媲美。但较差的长期工作稳定性,对钙钛矿光伏技术的商业化提出了严峻挑战。器件中每一个功能层及其界面,都与电池的长期稳定性密切相关。对此,陈江照、何冬梅团队报道了一种通用的离子迁移抑制策略来稳定多个
有良好的发光性能和热稳定性,使其在白光照明和植物生长照明领域具有广阔的应用前景。图1.
展示了Cs2NaLuCl6的晶体结构a),掺杂剂与宿主阳离子之间的有效结合能差(ἧ)以及Eform分析b
、1%Sb3+的激发波长依赖性光致发光光谱,以及荧光机制图。图4. 展示了使用Cs2NaLuCl6: 5%Ag+、5%Bi3+、zSb3+荧光粉的白色LED器件在3.3 V驱动电压下的电致发光效果,其中
文章介绍表面缺陷钝化对于提高钙钛矿太阳能电池的效率和稳定性至关重要。然而,其可重复性和普适性尚未得到充分探索,限制了大规模生产的实现。基于此,西湖大学王睿等人提出了一种基于氟代异丙醇的钝化策略,仅
冲洗,以去除多余的钝化剂分子。研究证明,该策略具有宽广的工艺窗口,对钝化剂浓度的偏差具有高容忍度,并且适用于多种器件架构、钙钛矿组成和器件面积。该方法实现了高功率转换效率,并有望在工业制造中提高可
在复杂应用环境中的高安全性和可靠性。钙钛矿组件的量产突破,是光伏技术奇点来临的标志性事件。此次协鑫光电大尺寸叠层钙钛矿组件成功通过认证,标志着协鑫光电在叠层钙钛矿核心材料体系、精密器件结构设计、高效
全新起点,持续深化叠层钙钛矿技术研发与高端制造能力,致力于为客户提供兼具高转换效率、卓越稳定性与全方位安全保障的新一代光伏解决方案。”