)会激发电子-空穴对,在内建电场作用下分离形成直流电。整个过程仅涉及光子能量转换,不产生任何核反应或化学变化,其电磁辐射属于非电离辐射范畴(频率300GHz),能量不足以使原子或分子电离。2. 安全标准
a) 电子传输层(ETL)制备的示意图。b) DLEO 在水中(左,20 毫克 / 毫升)和混合溶液(DMF:DMSO=9:1,右,3 毫克 /
毫升)中的照片。c) 通过原子力显微镜(AFM)获得
SEM 图像及其对应的原子力显微镜(AFM)图像。e,f) 掩埋钙钛矿薄膜的 X
射线衍射(XRD)分析。g) 相应钙钛矿薄膜的拉曼应力统计图 4. a) 基于 SnO₂/DLEO 电子传输层
使原子或分子电离。国际非电离辐射防护委员会(ICNIRP)明确指出,50/60Hz工频电磁场(光伏逆变器主要频段)的公众暴露限值为5kV/m(电场)和100μT(磁场),而实际测量显示:屋顶光伏
WBG钙钛矿(4000 rpm,45秒),滴加C₈₀(180 μL,10秒),100℃退火60分钟。热蒸发沉积LiF(1 nm)和C₆₀(20 nm)。中间连接层处理:原子层沉积(ALD)SnO
钝化剂的原子结构。吸附在左边和右边的阳离子是PEA+和TAR 3,黄色区域表示电荷积累区域,蓝色区域表示电荷耗尽区域。虚线框突出显示钝化剂的带负电荷区域与钙钛矿之间的相互作用。吸附在钙钛矿表面
,掺杂剂中的氟原子有助于产生疏水效果,从而提高器件的湿度稳定性。另外,研究发现添加AAH显著减缓了钙钛矿的结晶速率,使得晶粒尺寸更大,薄膜质量大幅提高。具有最佳掺杂浓度的器件实现了17.82%的最高效率。值得注意的是,未封装的器件在环境空气中储存1000小时后,仍保留了初始效率的90%以上。
) 两亲性 SAM 分子形成胶束及在共溶剂中分解的示意图。e) 对照组和 DMSO 处理的 2PACz-SAM
的原子力显微镜(AFM)形貌图像。f) 处理前不均匀的 2PACz-SAM 分子排列及
)
对照组与混合 SAM 的示意图。d) 2PACz 基钙钛矿薄膜与共吸附(CA)基钙钛矿薄膜的掩埋界面高分辨率原子力显微镜(AFM)图像,晶界沟槽角度估计分别为
51° 和 118°。e
分子添加剂作为一种提高钙钛矿太阳能电池(PSCs)性能和稳定性的高效策略,因其在抑制钙钛矿固有缺陷方面的潜力而备受关注。然而,添加剂的原子构型和电子性质对其钝化性能的影响却鲜少受到关注。鉴于
% CR时刚性器件效率达19.25%,超柔性器件达16.91%,均刷新同类OSC性能纪录。3.卤素-π键协同交联机制通过XPS、MD模拟和DFT计算证实CR的Cl原子与D18的N/S原子形成卤素键,同时
,捷佳伟创依托二十余年技术积累,系统展示了覆盖n-TOPCon、异质结(HJT)、TBC、钙钛矿技术路线的高效电池整线解决方案,管式氧化铝原子层淀积炉(边缘钝化)、管式低压淀积炉(LPCVD)、激光