损及变压器低压侧绕组损耗。在1500V电压等级下,组件组串、线缆、汇流箱数量均会减少、接线安装成本等会有所降低,同时,设备的功率密度提升,体积减小,运输、维护等方面工作量也减少,有利于光伏系统成本的
组件。当逆变器直流输入端子不足,导致逆变器直流侧接入的组件容量等于或小于逆变器交流功率额定值时,考虑到灰尘遮挡,组件输出至少降低2-3%,再考虑到组件衰减、线缆损耗等因素,实际传输到逆变器输入端的直流
专家都开始把目光投向超配设计和应用。当光伏电站直流侧组件提升到一定比例,逆变器交流侧满载工作时间变长,可减少由于光照波动引起的输出功率频繁波动,接入电网更友好。
1提高容配比的合理性
。
降本增效新贵,叠瓦大幕开启
叠瓦技术将电池片切片用导电胶互联,省去焊带焊接,减少遮光面积和线损,节省空间,比常规60型组件多封装13%的电池片,功率提升超20W以上,显著高于半片、MBB等其他
一张60型面积大小相当的版型组件内,叠瓦组件可以封装66~68张完整电池片,比常规封装模式平均多封装13%的电池片。
叠瓦技术的优势在于增加受光面积,减少线损,两者综合作用下可提升组件功率20W
,可增加50%的组串长度;其次,由于系统的电压提升,串联的组件数量增加,接到逆变器的直流线缆使用量减少,汇流箱的数量也可相应减小;同时,汇流箱、逆变器、箱变等电气设备的功率密度提升,体积减小,运输、维护
年前后,阳光电源、特变电工、华为等国内厂家以及GE、PE、SMA等海外厂家陆续推出1500伏电压等级的系统解决方案。该技术曾被率先应用于国外电站项目,以更低的BOS成本和更低损耗成为助力全球光伏
,相对于其他设备设施,保险本身存在的慢速损耗的属性,决定了老化更换不可避免。但从故障分析的视角,我们可以尽可能减少损耗,或者提前预判问题发生,进一步降低风险。根据观察我们可以发现,保险设施对于短时间内快速
的组串,大幅减少设备成本、线缆成本及施工成本。系统BOS成本降低的同时,有效提升系统发电量。
自研发出1500V逆变器后,阳光电源一直在探索、推动其在光伏电站中的应用。2016年,1500V集中式
1500V集中式逆变器顺利完成并网测试,自此揭开了我国1500V技术的序幕。所谓1500V技术即将光伏系统中用到的线缆、汇流箱、逆变器等部件的耐压从1000V抬高到1500V,通过更高的电压等级、连接更多
降低、逆变器的功率损耗、直流交流部分线缆功率损耗、变压器功率损耗、跟踪系统的精度等等。 1)灰尘、雨水遮挡引起的效率降低 大型光伏电站一般都是地处戈壁地区,风沙较大,降水很少,考虑有管理人员人工清理
。
许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时
%(单相输出允许l0%)。由于逆变器输出的高次谐波电流会在感性负载上产生涡流等附加损耗,如果逆变器波形失真度过大,会导致负载部件严重发热,不利于电气设备的安全,并且严重影响系统的运行效率。
3.额定输出
减少系统发电损失;而智能风冷除了是大功率逆变器必不可少的利器外,还能保证逆变器高温不降额,有效提高系统发电量,1500V也让系统损耗进一步降低,电站整体发电量可提升1%。
新品电压等级和功率的提高
,也使得系统逆变器、变压器等设备的投资成本大幅度降低;同时,通过直流二汇一、集成技术与支持铝合金方案等线缆优化设计,系统线缆成本随之降低。此外,SG225HX整机IP66防护和C5防腐的高防护等级设计
效率99%,12路MPPT设计,可保障光伏电站在各种复杂应用场景中提升发电量;具备PID防护及修复功能,可减少系统发电损失;而智能风冷除了是大功率逆变器必不可少的利器外,还能保证逆变器高温不降额,有效
提高系统发电量,1500V也让系统损耗进一步降低,电站整体发电量可提升1%。
新品电压等级和功率的提高,也使得系统逆变器、变压器等设备的投资成本大幅度降低;同时,通过直流二汇一、集成技术与支持铝合金