如何将可见光宽波段吸收且具有高吸光系数的钙钛矿材料构筑成高性能的彩色太阳能电池仍是一个挑战。
钙钛矿电池广泛的光学吸收和较大的吸收系数通常会导致呈现为深棕色的高效率电池。目前,已有两种代表性的方法来
太阳能电池
由于与增大的带隙相关的光学吸收会减弱,前一种方法通常会导致功率转换效率(PCE)值显著降低(通常小于13%)。
后一种方法利用了图案结构产生的工程光学特性,从而生成明亮和耀眼的结构颜色。尽管
科学报》。
夏若曦介绍,有机光伏材料可以通过分子结构,设计成可见光吸收较弱且有相对宽而强的近红外吸收。为了进一步优化器件的光学性质,传统的周期性一维光子晶体拥有选择性反射指定波长光的特性,引入半透明
太阳能电池进行光学设计时,不同于传统的周期性一维光子晶体设计思路,将其各层厚度视为自由变量并将活性层与银电极的厚度一并纳入优化,以考虑其间可能存在的耦合关系。通过遍历几乎所有可能的厚度组合(数千万个组合
利用、新一代能源与动力系统和能源战略与政策等领域。
该校于1996年成立了太阳能研究所,拥有光学工程一级学科硕士点、物理学光学博士点、凝聚态物理博士点和理论物理博士点。技术方面涵盖了半导体及光电子
器件、计算机仿真及优化设计、电化学、新能源、空间物理、热工机械、精密测试等多个与太阳能光伏技术相关的专业领域。
目前上海交大已建成一条相对完整的晶体光伏电池中试线,其自行研制的太阳电池组件测试仪和优质
本文摘要
在晶体硅太阳能电池中,金属-半导体接触区域存在严重的复合,成为制约晶体硅太阳能电池效率发展的重要因素。隧穿氧化层钝化金属接触结构由一层超薄的隧穿氧化层和掺杂多晶硅层组成,可以显著降低金属
的27.5%极限效率,同时也远远高于PERC电池(24.5%),最接近晶体硅太阳能电池理论极限效率(29.43%)(详细介绍见下文)。
随着太阳能电池研究的不断进步与深入,多种不同结构的高效
性质柔软、厚度只有几纳米、光学性能良好记者3日从南京工业大学获悉,该校王琳教授课题组制备出一种超薄的高质量二维碘化铅晶体,并且通过它实现了对二维过渡金属硫化物材料光学性质的调控,为制造太阳能电池
、光电探测器提供了新思路。该成果发表在最新一期国际期刊《先进材料》上。
我们首次制备的这一超薄碘化铅纳米片,专业术语称为原子级厚度的宽禁带二维PbI2晶体,是一种超薄的半导体材料,厚度只有几个纳米。论文
,在复合损失和光学损失间寻找最佳的平衡点。
天合光能光伏科学与技术国家重点实验室一直以研发低成本高效率太阳电池技术与产品作为出发点,长期致力于开发可量产的高效晶体硅太阳电池技术。在2016取得IBC
,天合光能基于传统制备工艺的N型双面电池已达到22.6%的转换效率,在业界内处于领先水平。如今,这一高效IBC电池的问世,更是成为低成本单结晶体硅电池中的佼佼者。
这几年,国内天合、晶澳、海润等企业对
芬兰阿尔托大学的研究人员提出了一种测试钙钛矿和染料敏化太阳能电池的新型简化方法。
研究人员解释说,他们的快速低阈值摄影方法甚至可以检测到钙钛矿电池中轻微老化的部位,比光学测量结果更可靠,而且比更
常用的X射线晶体学检测程序更简单。通过观察染料敏化太阳能电池中的碘离子和钙钛矿的颜色变化来判断电池的老化程度,电池使用时间越长,碘离子会逐渐从亮黄色变得透明,同时钙钛矿会变得变黄更暗。
但是目前的电池
很差。通常,FAPbI3具有两种晶体结构:非钙钛矿黄色相和3D钙钛矿黑色相。只有相钙钛矿采具有光学活性。用MA+或Cs+取代部分FA+可以抑制相变。
二、MACl添加剂作用机制尚不清楚
氯化物
综上所述,作者研究了钙钛矿薄膜中的MACl效应,其将中间相构建成钙钛矿薄膜,用于制备高质量的纯-FAPbI3钙钛矿薄膜。表面形貌、晶体学性质,光学吸收和光致发光性能得到增强,从而形成高性能钙钛矿太阳能电池
吗?我们一起来探讨。
为什么授予双面光伏组件豁免权
2017年,美国光伏企业Suniva公司向美国国际贸易委员会(ITC)提起了针对进口晶体硅光伏电池和组件的全球保障措施调查申请。经过多轮的调查与听证
。
此次USTR公布的豁免清单包括双面太阳能电池板,部分柔性玻璃纤维太阳能电池板,以及一部分光学薄膜电池板。其中对双面太阳能电池板的要求是,组件的两侧都能吸收光线并发电,且面板组件仅由双面太阳能电池
氧化物阳极材料(比如III-V族半导体)在水溶液环境下很不稳定,而常见的氧化物又很难在可见光下展现出高效的太阳能产氢效率;光伏过程对材料本身光学和电学性质要求较高,一般需要有合适带隙(1.0-1.6
难题。
据南京大学研究团队带头人潘晓晴教授介绍,自石墨烯被发现以来,以其为代表的各类二维原子晶体材料由于在信息传输和能源存储器件等领域的广泛应用前景而受到人们极大的关注。其中,钙钛矿氧化物由于过渡金属