环节竞争加剧,产品价格持续下行,公司产品盈利能力承压。受此因素影响,公司经营利润预计录得亏损。公告进一步指出,2025年上半年,钧达股份持续聚焦光伏核心技术,通过半片边缘钝化、栅线细线化、光学性能优化等
电池工艺技术升级,提升光伏电池转换效率、降低光伏电池生产成本。在行业前沿的BC、钙钛矿叠层等技术领域持续探索,推动产业化进展。同时,公司坚持全球化发展战略,一方面通过电池产品海外市场销售方式,持续开拓
和近红外光,对水下的优势蓝绿光吸收效率极低。精准匹配: FaPbBr3 的宽带隙特性使其光学吸收边向短波长(蓝光)方向移动,完美契合水下优势光谱,从而显著提升对有限水下光能的捕获能力。最令人惊讶的发现
阳光穿透清澈水体,照射在仅0.5厘米深的实验装置中。意大利国家研究委员会物质结构研究所的科学家们记录下一组令人振奋的数据:经过特殊设计的钙钛矿太阳能电池,其在水下的功率转换效率(PCE)竟比在同等
摘要同时实现有效的缺陷钝化和优异的电荷提取能够最大化钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)。与先前已有的基于异质结的 PSCs
不同,韩国蔚山国立科学技术院&高丽大学研究团队引入
PCE。1. 研究背景与挑战钙钛矿太阳能电池(PSCs)作为新兴光伏材料,功率转换效率(PCE)快速提升,但溶液法制备的钙钛矿薄膜存在结构缺陷(如空位、间隙、取代缺陷),导致离子迁移、复合损失
提升性能是光伏产业不断进步的必要挑战。在商业化领域中,随着市场要求的不断提高,太阳能电池板的视觉效果也越来越受到关注。因此,开发兼具更高功率转换效率(PCE)和更好美观外观的组件变得愈发重要。背接触
光管理策略,即在光照面采用分级微/亚微米纹理金字塔结构,在背面间隙区域采用纳米结构抛光表面,以减少光学损失并提高外观均匀性,从而在350.0平方厘米商业尺寸的单结硅太阳能电池上创造了27.03%的创纪录
拉伸应变的塑性松弛。通过隔离非本征晶相干扰和与激子相关的光学干扰,我们观察到3D钙钛矿仅在适度拉伸应变弛豫的情况下保持高结晶度。这种适度的弛豫增强了3D钙钛矿中的光电性质,包括加宽的带间吸收和延长的电荷
载流子寿命,显著有助于提高光伏器件中可获得的最大功率转换效率。我们的发现概述了优化光电性能的应变弛豫条件,推进了卤化物钙钛矿中的应变工程。创新点1.提出2D诱导塑性应变松弛机制,利用长链烷基胺配体
创建钙钛矿-有机叠层器件,基于可实现17.9%的功率转换效率和28.60
mA/cm2的高短路电流密度的有机电池;它使用钙钛矿太阳能电池,开路电压为1.37 eV,填充因子为85.5%。新加坡
26.4%
的功率转换效率。“新设计的叠层电池在0.05 cm2 的面积上实现了 27.5% 的功率转换效率,在面积1 cm2时效率为26.7%,第三方独立认证结果为
26.4%,“科学家们说,但
同时,将光学带隙降低到1.27 eV。瞬态吸收光谱证实了从P2 EH-1V到施主PM
6的有效空穴转移。基于P2 EH-1V的器件显示出0.20
eV的降低的非辐射电压损耗,而不影响电荷产生效率
:设计并合成了新型不对称非富勒烯受体P2EH-1V,具有单侧共轭π桥,降低光学带隙至1.27 eV。效率提升:基于P2EH-1V的钙钛矿-有机叠层太阳能电池实现了27.5%的效率。稳定性增强:优化后的
拉伸应变的弛豫。二维钙钛矿会引发三维结构的碎片化,从而促进拉伸应变的塑性弛豫。通过排除外禀晶相干扰和激子相关光学扰动,发现只有当三维钙钛矿保持适度拉伸应变弛豫时,才能维持其高结晶度。这种适度弛豫可显著改善
三维钙钛矿的光电性能——包括展宽的带间吸收和延长的载流子寿命,最终使光伏器件可获得的最大功率转换效率得到显著提升。本研究确立了优化光电性能的应变弛豫条件,推动了卤化物钙钛矿应变工程的发展。图1.
27% 的功率转换效率(PCEs)。与现有围绕 SAM 分子结构调制的综述不同,本工作重点关注基于 SAM 的倒置 PSC
在掩埋界面工程方面的最新进展。首先,通过对文献的全面分析,定义了八种
不同的掩埋界面工程策略,并阐明了其潜在机制。其次,系统梳理了 SAM 基倒置 PSC
在稳定性研究方面的最新进展。最后,提出了优化器件效率、稳定性及可扩展商业化的策略建议。文章概要一、引言p-i-n
技术解决方案。针对农光互补项目中的作物光照难题,爱旭与中科大光电子实验室结合光学匀光扩散材料,联合开发多种技术方案。该技术体系可有效提升土地利用效率,为农作物增产提供技术支持。“与顶尖高校和产业链
ABC技术结合,研发出兼具发电功能与建筑围护特性的光伏幕墙、屋顶瓦等产品。这些构件在保持光伏发电效率的同时,满足建筑防火、防水、结构承载等基础性能要求,推动建筑物从能源消耗体向能源生产体转化。双方建立