蓝绿激光器是下一代光电子器件的关键组件。传统的GaN-InGaN激光器性能优异,但其复杂的制备工艺和精确带隙调控的挑战限制了其应用。杂化铅卤钙钛矿因其可调带隙和低成本溶液加工特性成为有潜力的替代材料
载流子从低
n 向高 n 量子阱的皮秒级能量转移(图 2b),提升光学增益效率。3. 创纪录低阈值与 Auger 复合抑制:实现 ASE 阈值低至 1.94 μJ·cm⁻²(比混合卤素体系降低 50
示意图(右)。b,完全由光图案化二维材料构成的场效应晶体管(FET)阵列和逻辑门器件的实物照片,制备于一片2英寸硅晶圆上。c,通过直接光图案化工艺制备的二维范德华图案的光学显微镜图像。图案化工艺的
研究内容澳大利亚国立大学 Manuka Suriyage, Ruo-Si Chen & Yuerui Lu教授团队发表了以下见解:二维材料因其超薄、高性能的特性,在下一代电子器件领域中展现出巨大潜力
国晟科技琏升光伏█ TOPCon组件效率之最晶科能源重磅发布Tiger Neo
3.0系列组件产品,该组件融合20BB,HCP,MAX、FP等多项创新技术。这些技术有效减少了光学和电学的损耗,显著提升
4.8MW及9.6MW集中式光伏逆变解决方案,为客户因地制宜带来更多可靠选择。产品采用创新性分区智能温控技术,显著延长关键元器件使用寿命。其独创的模块化设计支持单个IGBT组件30分钟内完成快速更换
发布的Tiger Neo
3.0系列组件产品,采用了晶科新一代N型TOPCon技术,并融合了20BB无主栅结构、HCP边缘钝化技术、MAX材料系统等多项关键工艺。这一技术组合使得组件在电学和光学
SiC功率模块,提高开关频率,系统效率较传统硅基(SI)器件提升0.32%;-40℃至
70℃全温域稳定工作,无惧极寒与高温环境;5000米海拔场景下仍可额定功率运行,彻底解决高原地区降额痛点。其
戴设备、建筑一体化光伏(BIPV)等创新应用铺平道路。光学可调:通过调整化学成分(A、B、X位离子),带隙可在较宽范围内精细调控,特别适合与硅电池组成叠层电池(Tandem)互补光谱吸收钙钛矿太阳能电池
阴离子(如碘I⁻、溴Br⁻或氯Cl⁻)器件结构主要分为两种:正式(n-i-p)结构&反式(p-i-n)结构典型器件结构包含三个关键部分:光活性层:钙钛矿材料,通常为ABX₃结构的金属卤化物钙钛矿(如甲胺铅
电荷转移,而在p-Si中则存在电子转移势垒。这解释了为何n-p型器件表现优异,而p-n型器件效率下降。 创新器件设计:微线结构助力高效收集为了高效收集界面处产生的电荷(主要是少数载流子),团队采用了浅
超薄柔性钙钛矿太阳能电池(f-PSC)
作为便携式电源非常受欢迎,而包括钙钛矿和器件透明电极在内的关键部件的刚度导致了制造方面的挑战。2025年6月2日,香港理工大学严锋等于Advanced
杨氏模量的二维钙钛矿作为润滑剂以释放应力,这通过原位TEM
表征得到证实。其次,将掺杂三氯蔗糖的导电PEDOT:PSS用作透明电极,以增强器件的机械柔韧性和光伏性能。第三,采用超薄PET衬底将中性面
,抑制裂纹扩展速度,并减少了界面机械不匹配现象。最终,在小面积柔性器件上实现了19.58%的PCE,这是迄今为止柔性有机太阳能电池(f-OSCs)中最高的PCE之一。值得注意的是,可拉伸器件在100
%拉伸应变下仍能保持超过10%的PCE,超越了以往的可拉伸光伏器件。为进一步验证该策略在大面积模组应用中的潜力,制备了基于25
cm2的柔性及可拉伸模组,其PCE分别为16.74%和14.48
有望重塑高效光伏技术的未来格局。光子上/下转换技术包括光子上转换(Up-conversion, UC)和光子下转换(Down-conversion,
DC),与正面无任何光学遮挡的BC电池天然适配
Shalav团队将镧系基太阳能上转换器从理论研究推进至实用器件开发,奠定了该领域的基础。2009年,Demopoulos团队首次在染料敏化太阳能电池(DSSCs)中采用LaF₃/Er纳米晶体,验证了
在体异质结中,介电材料在激子极化和形貌控制方面起着关键作用。为了制备高效率、大面积的有机光致发光器件(OPV),韩国科学技术研究院 Hae Jung
Son等人开发了香芹酮(CV)介电添加剂
电子传输层表面能的影响。因此,OPV 器件表现出改进的性能,特别是使用二元
D18:PM6给体的器件在 1 cm² 的活性面积下实现了 17.44% 的效率,相应的模组效率达到了16.27%。这是