光子损失

光子损失,索比光伏网为您提供光子损失相关内容,让您快速了解光子损失最新资讯信息。关于光子损失更多相关信息,可关注索比光伏网。

日本公司开发出新型太阳能电池:效率超26% 打破25.6%的记录来源:新浪科技 发布时间:2017-03-24 09:05:48

最大化地收集前方的光子。而且,与许多常见的太阳能电池一样,这款电池的表面还覆盖了一层无定形硅和抗反射层,可以为电池部件提供保护,并更有效率地收集光子。在描述了太阳能电池的构造之后,研究人员还分析了电池
无法达到理想效率值29%的原因,为未来电池开发者的优化提供参考。他们估计,总体效率中有0.5%的损失是电阻造成的,1%则是由于光学损失(电池接受光照的方式),还有1.2%源于偶然的电子结合损失自由电子

日本公司开发太阳能电池转换率再获突破 目前已达26.6%来源:新浪科技 发布时间:2017-03-23 23:59:59

电池内部能最大化地收集前方的光子。而且,与许多常见的太阳能电池一样,这款电池的表面还覆盖了一层无定形硅和抗反射层,可以为电池部件提供保护,并更有效率地收集光子。在描述了太阳能电池的构造之后,研究人员
还分析了电池无法达到理想效率值29%的原因,为未来电池开发者的优化提供参考。他们估计,总体效率中有0.5%的损失是电阻造成的,1%则是由于光学损失(电池接受光照的方式),还有1.2%源于偶然的电子结合

日本太阳能光热发电系统发电效率达世界最高水平来源: 发布时间:2016-12-06 09:23:59

,然后在包含的光子能量总和不变的情况下,转换成其他波长的光线(热辐射)。这样,即使使用价格低廉的单结太阳能电池,也能实现高效发电。在本次研究中,东北大学提出了以热辐射光谱控制和热辐射单向运输的概念为
基础来提高热辐射转化及运输效率的新方案,并根据这一概念进行了Solar-TPV系统的整体设计。Solar-TPV系统将太阳光转化成热辐射,是光子相互转化的波长转换系统,不同于将太阳光转化成热的传统聚光型

日本东北大学开发出效率达5.1%的太阳能光热发电系统来源:日经BP 发布时间:2016-12-05 17:06:59

系统将太阳光转化成热辐射,是光子相互转化的波长转换系统,不同于将太阳光转化成热的传统聚光型太阳能热发电。 因此,提高效率的重点是,将吸收的太阳能无损失地运送到波长选择发射器,使波长选择发射器发出的
进行发电。太阳光的特点是可以先转化成热,然后在包含的光子能量总和不变的情况下,转换成其他波长的光线(热辐射)。这样,即使使用价格低廉的单结太阳能电池,也能实现高效发电。 多结太阳能电池与

太阳能电池片隐裂及识别方法来源:光伏在线学堂新浪博客 发布时间:2016-10-11 09:38:58

。45倾斜裂纹(第3类)的效率损失是平行于主栅线损失的1/4。垂直于主栅线的裂纹(第5类)几乎不影响细栅线,因此造成电池片失效的面积几乎为零。相比于晶硅电池表面的栅线,薄膜电池表面整体覆盖了一层透明导电膜
,可能会产生效率损失,但不必谈隐裂色变。3、检测隐裂的手段EL(Electroluminescence,电致发光)是简单有效的检测隐裂的方法。其检测原理如下。电池片的核心部分是半导体PN结,在没有其它激励

不容忽视!快速识别电池片隐裂掌握预防措施和检测方法都这这里来源:光伏在线学堂 发布时间:2016-10-09 15:49:24

4类)。根据研究结果,50%的失效片来自于平行于主栅线的隐裂。 45倾斜裂纹(第3类)的效率损失是平行于主栅线损失的1/4。 垂直于主栅线的裂纹(第5类)几乎不影响细栅线,因此造成电池片失效的面积
,组件中2/3的斜条纹对组件的功率稳定没有影响。因此,当组件中的电池片出现隐裂后,可能会产生效率损失,但不必谈隐裂色变。 3 检测隐裂的手段 EL(Electroluminescence,电致发光)是

【科技】氮化钛纳米颗粒对阳光有90%的吸收率来源:中国科学报 发布时间:2016-06-29 09:33:13

近日,日本国立研究所材料纳米构造中心纳米系统光子学组研究团队通过数值计算发现,过渡金属氮化物和碳化物纳米颗粒能有效吸收阳光。同时实验证实,当氮化物纳米颗粒分散于水中时,会迅速提升水温。通过有效利用
太阳能集热器和集热管吸收阳光的方法会由于热传导方式导致热量损失。由于纳米颗粒分散在介质中时可直接加热包括水在内的介质,因此而备受关注。 最近,上述研究团队和日本国立研究所环境与能源材料部高级研究员

【发现】氮化钛纳米颗粒对阳光有90%的吸收率来源: 发布时间:2016-06-28 14:44:59

近日,日本国立研究所材料纳米构造中心纳米系统光子学组研究团队通过数值计算发现,过渡金属氮化物和碳化物纳米颗粒能有效吸收阳光。同时实验证实,当氮化物纳米颗粒分散于水中时,会迅速提升水温。通过有效利用
和集热管吸收阳光的方法会由于热传导方式导致热量损失。由于纳米颗粒分散在介质中时可直接加热包括水在内的介质,因此而备受关注。最近,上述研究团队和日本国立研究所环境与能源材料部高级研究员

氮化钛(tin)纳米颗粒实现太阳能利用新突破来源:中国科学报 发布时间:2016-06-28 10:24:44

近日,日本国立研究所材料纳米构造中心纳米系统光子学组研究团队通过数值计算发现,过渡金属氮化物和碳化物纳米颗粒能有效吸收阳光。同时实验证实,当氮化物纳米颗粒分散于水中时,会迅速提升水温。通过有效利用
太阳能集热器和集热管吸收阳光的方法会由于热传导方式导致热量损失。由于纳米颗粒分散在介质中时可直接加热包括水在内的介质,因此而备受关注。 最近,上述研究团队和日本国立研究所环境与能源材料部高级研究员

tin纳米颗粒实现太阳能利用新突破来源: 发布时间:2016-06-28 09:36:59

近日,日本国立研究所材料纳米构造中心纳米系统光子学组研究团队通过数值计算发现,过渡金属氮化物和碳化物纳米颗粒能有效吸收阳光。同时实验证实,当氮化物纳米颗粒分散于水中时,会迅速提升水温。通过有效利用
和集热管吸收阳光的方法会由于热传导方式导致热量损失。由于纳米颗粒分散在介质中时可直接加热包括水在内的介质,因此而备受关注。最近,上述研究团队和日本国立研究所环境与能源材料部高级研究员