文章介绍宽带隙 (WBG) 钙钛矿太阳能电池 (PSC)
对于提高串联太阳能电池的效率至关重要,但存在严重的光电压不足和卤化物偏析,大大降低了其性能和稳定性。基于此,北京理工大学李红博等人开发
)
优取的方向和出色的光稳定性。当集成到 0.945 cm2 单片钙钛矿/硅叠层太阳能电池中时,基于 NCNT 的器件可提供 32.0% 的高效率(认证
31.7%)。这项工作强调了纳米晶体在调节
近年来,钙钛矿太阳能电池(PSC)在光电转换效率(PCE)上频频突破,成为下一代光伏技术的热门方向。界面层材料——特别是自组装单分子层(SAM)——在提高电池性能方面扮演了至关重要的角色。然而,目前
本研究突破了有机分子设计在钙钛矿界面层中的“性能瓶颈”,为开发高效、稳定、可量产的下一代太阳能电池奠定了坚实基础。在新能源技术风口之上,有机双自由基或许正是驱动钙钛矿商业化前进的“隐形推手”!
近日,据NEUTRALNEWS等多家海外媒体消息, 印尼国家油气公司Pertamina旗下新能源与可再生能源公司(Pertamina
NRE)与隆基绿能正式启动了一项在印尼建设太阳能电池板制造
设施的战略项目。据悉,该工厂的目标年产能为1.4GW,将采用全球光伏组件制造领先企业隆基的最新技术。该项目将应用HPBC
2.0技术,能够生产高效率光伏组件。根据印尼工业部的数据,印尼目前的组件产能为1.6GW,随着该项目的落地,印尼组件产能将增至3GW。
为了优化晶体质量,并通过无溶剂法制备高效钙钛矿太阳能电池(PVSC),钙钛矿成膜过程中的成核调控已被广泛研究。然而,由于金属离子分布不均匀以及随后的不均匀成核,无溶剂制备中垂直成核过程通常难以控制
。鉴于此,2025年7月7日江西师范大学梁爱辉&陈义旺于AM刊发聚合物模板仿生矿化成核及无溶剂技术实现高性能钙钛矿太阳能电池的研究成果,受天然生物矿化机制的启发,研究人员首创在钙钛矿层的埋底界面引入
近年来,在空穴传输层(HTLs),尤其是自组装单层(SAMs)的辅助下,倒置钙钛矿太阳能电池(PSCs)发展迅速。然而,目前器件性能强烈依赖于 HTL
厚度,其厚度需严格控制在 5 nm,若
太阳能电池(PSCs)的发展现状效率已达 27%,关键依赖高效空穴传输层(HTL),如自组装单层(SAM)类分子(Me-2PACz 等),但
SAM 厚度需严格控制在~5 nm,10 nm 时效率从
、器件及系统的技术标准规范,形成完整的叠层光伏技术解决方案,实现高效稳定的叠层电池制备。值得注意的是,该钙钛矿/晶硅叠层太阳能电池生产线仅用于企业内部研发,不涉及新增产值。
7月2日,浙江海宁市经济和信息化局发布,正泰新能科技股份有限公司申报的“新型晶硅-钙钛矿叠层太阳能电池关键技术及成套装备”项目获备案。据了解,该项目为改建项目,计划总投资38110万元。根据项目备案
晶硅-钙钛矿叠层太阳电池因其有望超越单结电池的肖克利-奎伊瑟(Shockley-Queisser)效率极限,而成为当前全球先进光伏技术研究的热点。受制于短波光子的热驰豫损失,传统晶硅单结太阳电池
光伏技术。近年来晶硅-钙钛矿叠层太阳电池取得重要进展,但宽带隙钙钛矿顶电池仍然存在显著的界面非辐射复合问题,主要包括钙钛矿上界面与电子传输层的界面复合问题以及空穴传输层在绒面衬底上覆盖性及均匀性不佳引起的
小型双凸紧凑型透镜,可将阳光集中在一个微小的有源电池区域,并放置在太阳能电池上方,彼此相距 5 厘米和 10
厘米。Navazani
解释说,该设置增加了照射到有源光伏层的光强度,这可以“显着
意大利的研究人员正在解决两个金属卤化物钙钛矿太阳能光伏挑战,减少铅的使用并延长功率转换效率的稳定性,采用微聚光器和皮秒激光加工的新型组合。皮秒激光图案样本 热那亚大学来自热那亚大学和罗马大学 Tor
真空辅助混合沉积宽带隙(WBG)钙钛矿因其优势而得到广泛认可,包括易于扩大规模和共形生长,同时避免使用有毒溶剂。然而,对于提高薄膜基叠层太阳能电池性能至关重要的宽带隙钙钛矿(1.8
eV)的生长
在混合沉积下仍然缺乏充分的控制。鉴于此,2025年7月3日新加坡国立大学侯毅于Nature
Communications刊发调节混合沉积钙钛矿/有机叠层太阳能电池中的宽带隙钙钛矿正面堆叠的研究成果
提升性能是光伏产业不断进步的必要挑战。在商业化领域中,随着市场要求的不断提高,太阳能电池板的视觉效果也越来越受到关注。因此,开发兼具更高功率转换效率(PCE)和更好美观外观的组件变得愈发重要。背接触
(BC)硅太阳能电池的结构优势在于其正面无栅线,使得其在外观性上有更大的设计空间,并且在单结硅太阳能电池中具有最高的理论PCE。合理利用这些结构特性对于实现高性能光伏电池并深入了解其工业潜力至关重要