策略;提出材料结构–性能–稳定性之间的协同机制,为低成本无机HTLs设计提供新思路。写在最后这项研究提供了一种简单、有效的策略来突破NiOx基钙钛矿电池的性能瓶颈。通过引入钴酞菁材料并优化其形貌结构(从薄膜到纳米线),显著提升了空穴提取效率和界面稳定性,展现出其在下一代高效钙钛矿光伏器件中的广阔应用前景。
生产等问题。值得注意的是,目前钙钛矿材料的最低带隙(约1.2eV)限制了全钙钛矿多结光伏器件的发展(例如,四结及以上器件需要至少两个子电池的带隙小于1.15eV)。最近,通过在Pb-Sn钙钛矿薄膜中
的潜力,需要持续优化子电池性能,并辅以先进的光管理技术(包括抗反射涂层和光子结构),以确保最佳的光子利用和电流匹配。结构设计的实际应用优化全钙钛矿叠层光伏器件的实际性能取决于对多种变量的适应能力,包括
述受体材料与聚合物给体PBDB-T结合构建光伏器件后,作者鉴定出一种性能优异的受体分子LLZ 1,由于LLZ 1具有显著的J聚集特性、较高的LUMO能级、高的PLQY、高度有序的面子堆积模式以及
30%的环境中存放2800小时后,效率保持在初始值的95%以上;在65℃下热老化1500小时后,效率保持在初始值的90%以上。研究人员介绍,此项研究提供了一种行之有效的方法,有助于解决钙钛矿光伏器件和
具有最合适带隙的全无机α - CsPbI₃钙钛矿面临着相稳定性低和高湿度敏感性的严峻挑战。鉴于此,2018年9月24日上海交大赵一新等于JACS发文,通过简单的苯基三甲基溴化铵(PTABr)后处理可以实现双功能稳定,包括梯度溴掺杂(或合金化)和表面钝化。对CsPbI₃进行PTABr处理仅在紫外 - 可见吸收光谱中引起小于5纳米的蓝移,但能显著稳定钙钛矿相,使其具有更好的稳定性。最后
大清楚)。其次,如上所述,钙钛矿光伏器件原材料及加工成本低,具有很好的商业化应用潜力,正处于产业化初期。从这个意义上,钙钛矿太阳电池超越硅基电池、或与之并驾齐驱,应该不是梦想。这里不妨罗列部分具体数据来佐证之
出现,会严重影响所制备薄膜的结构与成分均匀性,进而严重影响光伏器件性能与稳定性。笔者工作的团队,在高进伟教授等带领下,多年来一直致力于将钙钛矿光伏薄膜做大、做好。虽然历尽艰辛,但总感觉蹒跚不前、进展
%拉伸应变下仍能保持超过10%的PCE,超越了以往的可拉伸光伏器件。为进一步验证该策略在大面积模组应用中的潜力,制备了基于25
cm2的柔性及可拉伸模组,其PCE分别为16.74%和14.48
自适应架构,互锁导电弹性体网络从根本上解决了可拉伸光伏器件中的力电悖论。双相界面工程策略协同了分子尺度的拓扑缠结和介观尺度的梯度模量变化,实现了f-OSCs的PCE为19.58%。此外,该策略在100
了关键的技术支持和创新能力。硅 - 钙钛矿叠层太阳能电池作为下一代高效光伏器件,具有独特的优势。它结合了钙钛矿顶部电池和硅底部电池,能够捕获比传统单结电池更广泛的太阳光谱。具体而言,半透明的钙钛矿
高非辐射复合能量损失(ΔEnr)的持续挑战仍然是提高有机太阳能电池(OSC)功率转换效率(PCE)的关键瓶颈。近日,北京航空航天大学孙晓波、孙艳明、林雪平大学Zhang Huotian通过在末端引入高发光的三苯胺官能团,设计并合成了一种熔融的非富勒烯受体Z-Tri。本文要点1) PM6:Z-Tri二元体系实现了0.137 eV的低ΔEnr。在这一基础上,Z-Tri被用作客体组分掺入到PM6
: 麻省理工学院, Joule麻省理工学院(MIT)的科学家们利用一种被称为单重态激子裂变(SF)的效应,展示了一种新型硅太阳能电池概念,该概念有可能超过传统光伏器件的量子效率极限。单重态激子裂变是在某些材料