要避免光伏运维出现孤岛式运营。他认为:光伏运维并不是要大而全,而是要将业主需求、管理需求和运营任务串联起来,形成生产、监控的闭环。在他看来,这类似于光伏运维侧的智能移动办公软件钉钉,这座光伏电站哪里
进一步发展,焊带的设计对组件性能存在如下几点制约: A ●组件电路排列是全串联方式,遮挡、热斑等造成的问题对于组件的输出与可靠性影响很大。 B ●组件里的电池隐裂问题,多由于焊带与电池主栅之间的
了一个全新的技术方向:半片MBB+叠片。该技术由小牛自动化独创,在保持原纯铜导线互联的串联焊接方式的同时,切半电池片间采用负间距,即电池片间重叠0.5mm的叠片技术。其特征是:在工艺完全与原串焊方式一致的
组件电池片之间采用汇流条连接结构,大量汇流条的使用,增加了组件内部的损耗,降低了组件转换效率,同时单片电池片的差异在串联结构下,反向电流对组件影响会增加,从而产生热斑效应而损坏组件甚至影响整个光伏系统的
子可以提高我们能源的能耗水平,也就是可以使我们国家的单位GDP的能耗水平进一步的降低,这是两种类型的多能互补形式。 说到多能互补的要素,我们知道多能互补有源、有网、有荷,怎么把这些东西串联起来
。 有焊带设计中,组件中电池的排列只能根据焊带走势进行串联,遮挡、热斑等问题多来自于此;组件的隐裂问题,多由于焊带与电池之间的应力引起;焊带怕水汽侵蚀;影响效率进一步提升。 尤其是目前光伏产业
此外,组件采用十二主栅电池设计使电流传输路径更合理,电池片更低的串联电阻,更高的转换效率,有效改善隐裂造成的风险,更有利于光电流收集。十二主栅电池片,效率较常规电池提升0.2%。通过在电池正面采用
、组串失配 组串失配包括电流失配和电压失配。电流偏差引起(混装、未进行电流分档)影响较大,电压偏差引起(混装)影响较小。 电流失配由同一组串中串联的各电池组件间电流不同导致,串联电路中,组串电流由组串
②河北某客户安装的20千瓦光伏电站,后排组件下半部分全天被前排组件遮挡,实测后排组件损失发电量约90%。
自身遮挡
问题后果:
由于一块组件中的电池片都是串联的,每路直流组件的若干组件也是
串联的,所以遮挡一块组件,甚至遮挡一块组件的其中一块电池片,都会对整组组串的功率输出造成很大的影响。
2、安装角度问题
部分光伏电站没有按照当地最佳安装倾角来建设(不含随屋顶角度平铺的情况
)的情况下可以用简单的公式计算得到,其中N为组件串联块数,Voc为组件开路电压,K为开路电压温度系数,Vdcmax为逆变器直流最大输入电压,t为项目地历史最低温度: 另外还需考虑到逆变器的MPPT电压