在光伏系统中,直流电缆暴露在室外,有可能发生短路和接地故障,这时候就需要保护。熔断器作为一种过电流保护器件,串联在电路中,可在系统出现短路故障时及时切断故障回路,保障系统安全,逆变器和汇流箱一般
采用光伏熔丝,但是熔丝也是不可靠的,如果设计得不好,容易发生误判。
熔丝常见失效模式分为过电流熔断,老化熔断,过温熔断。过电流熔断是在过载,短路等超出额定的情况下发生的保护性熔断;老化熔断是指在长期的
程度地保证了短路电流的稳步增长。金属化方面,该高效电池在使用先进电极设计的同时,优选新型丝网印刷浆料,降低串联电阻和金属/硅界面复合几率,显著提升电池填充因子。
在此之前,P型单晶电池转换效率纪录为
突破性进展。他们设计和制备的叠层有机太阳能电池材料和器件,实现了17.3%的光电转化效率,刷新了世界纪录。
相比硅基无机太阳能电池,有机太阳能电池可以弯曲,并且足够薄,可在建筑物或服装内弯曲和扭曲
其它因素,并且背面的相互遮挡可能会降低发电量。这在很大程度上取决于光伏系统的设计,并且应当使用最新的模拟程序进行计算。在实验室及户外环境中完成测定的单个组件可作为模拟的最小测试单元。
到目前为止
背场金属化已经成功地应用于太阳能电池片生产,以避免电池背面的串联电阻损失。这种铝背场提高了太阳能电池片的转换效率,而金属化背面则具有一定程度的光反射功能。
目前,我们正在经历全面的技术升级:将至
前言
随着市场预期见好,未来光伏项目会逐渐增多,小固整理了近期朋友们的所有提问,包含:系统设计、监控问题、常见故障、安装应用等各个方面的问题,并按照问题类型进行了分类汇总,一并筛选节录如下,方便
您查阅参考。
(来源:微信公众号固德威光伏社区ID:GWxiaogu 作者:布鲁斯)
系统设计类
1、20kw的逆变器,组件一路已经安装24片,一片是38.8V,想多安装组件,可以吗?
答
) 电气设计 光伏列阵 伏组件使用3块1串联设计,能确保-20℃~60℃的温度范围内组串的开路电压低低于145V最大工作电压,组串的工作电压在60-115V内,保证光伏系统全年运行稳定。 储能电池 配置
低温导电银浆。异质结电池对低温银浆的核心要求如下:
高电性能:对于银浆的体电阻要求一般在5.0*10-6-10-5.cm,需要银浆有良好的接触,很低的串联电阻(Rs)和较高的填充因子(FF
18根或更多根铜线收集电流,消除了主栅并且优化细栅线的宽度和间距,极大的降低了银耗量和电池片生产成本。优势如下:
铜线替代主栅线的设计,使银耗量大幅度下降,极大地降低了太阳电池的制造成本;
载流子
发现PID效应时提出: 组件串联后可形成较高的系统电压(以美国为代表的600V,以欧洲为代表的1000V),组件长期在高电压工作,在盖板玻璃、封装材料、边框之间存在漏电流,大量电荷聚集在电池片表面
,使得电池片表面的钝化效果恶化,导致填充因子(FF)、短路电流(Isc)、开路电压(Voc)降低,使组件性能低于设计标准。
PID效应的成因
电池组件在封装的层压过程中,分为5层。从外到内为:玻璃
要避免光伏运维出现孤岛式运营。他认为:光伏运维并不是要大而全,而是要将业主需求、管理需求和运营任务串联起来,形成生产、监控的闭环。在他看来,这类似于光伏运维侧的智能移动办公软件钉钉,这座光伏电站哪里
标准处处长汪毅透露:最新的光伏发电相关国家标准将很快公布,从规划设计到运行、检修、维护均是今年讨论的重点,并进行了调整。据他介绍,分布式光伏集中运维标准即将进入报批流程。
积极探路中
光伏电站
进一步发展,焊带的设计对组件性能存在如下几点制约:
A
●组件电路排列是全串联方式,遮挡、热斑等造成的问题对于组件的输出与可靠性影响很大。
B
●组件里的电池隐裂问题,多由于焊带与电池主栅之间的
-焊带终结者
于是业界开始研发无焊带的设计,IBC, MWT等基于电池技术的无焊带设计应运而生,但规模与成本还是有一定的制约。而当目光转向组件端时,通过导电胶柔性连接的叠瓦组件被业界寄予厚望
组件电池片之间采用汇流条连接结构,大量汇流条的使用,增加了组件内部的损耗,降低了组件转换效率,同时单片电池片的差异在串联结构下,反向电流对组件影响会增加,从而产生热斑效应而损坏组件甚至影响整个光伏系统的
运转。
叠片组件利用切片技术将栅线重新设计的电池片切割成合理图形的小片,将每小片叠加排布,焊接制作成串,再经过串并联排版后层压成组件。这样使得电池以更紧密的方式互相连结,在相同的面积下,叠片组件可以