等原因而引起的预想外的线路电弧为故障电弧,也称为坏弧(Bad Arc),分为以下2种类型:
串联电弧
电弧仅在一条导线中燃烧。磨损的导线被外力拉开或者插座和铰链触点连接发生松动所发生的故障电弧都
属于串联电弧。串联电弧故障电流由于受负载限制,不会超过导线的负荷。
并联电弧
光伏系统中,直流线缆的绝缘皮被扎破或者被划破。发生的电弧都属于并联电弧。
在空气中电弧的温度是非常高的,小电流的电弧
直流开关,不使用只留断路器。
2.2 直流滤波
IGBT在工作时,不仅仅向交流侧传递干扰信号,同时也向直流侧传导干扰信号,直流侧的干扰信号通过电池板的铝合金边框向周围环境释放被放大的干扰信号,这样
谐波源并联,除起滤波作用外,还兼顾无功补偿的需要。而且可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路。
Lc滤波电路
通常电流源
串以上的电池组构成。由于电池在生产过程和使用过程中,会造成电池内阻、电压、容量等参数的不一致。这种差异表现为电池组充满或放完时串联电芯之间的电压不相同,或能量的不相同。这种情况会导致部分过充,而在放电
会由18-20块电池组件串联。由于组件之间的个体差异造成组串之间的电压和电流的差异,又因为并联的组串数量过多,这就造成了不同大小电压的耦合,降低了整个光伏阵列的效率。组串式逆变器有2-3个MPPT
辐照度条件下,最大功率点是不同的。温度不同时,最大功率点也不同。温度越高最大功率点越低如图2
图 3
光伏阵列在使用过程中易受周围环境(如浮云,建筑物,树木遮荫等)和电池板表面的灰尘的干扰
,如图2(a)和(b)所示,可见黑斑位置并不确定、形状似圆形、而非规则的圆点或同心圆。 利用太阳电池分选机测试实验电池片的电学性能参数,如表1所示。表中,黑斑电池片的串联电阻Rs和FF因子
了很好的保护作用,而随着温区5、6温度的升高,铝浆局部烧穿了氮化硅保护层与Al2O3层,直接接触到了硅片,形成了额外的电流通道,所以填充因子上升,串联电阻下降。
PERC电池的并联电阻在烧结曲线
)。过高的峰值温度会导致铝浆烧穿Al2O3上的SixNy保护层,破坏Al2O3的钝化效果,形成额外的导电通道,开路电压、短路电流、串联电阻与转换效率均会大幅降低,但并联电阻相对保持稳定。PERC电池的
降。市场主流晶硅光伏组件的峰值温度系数大概在-0.38~0.44%/℃之间,即温度升高,光伏组件的发电量降低,意思是:理论上是温度每升高一度,发电量降低0.38%左右。而薄膜太阳能电池温度系数会好很多
,如铜铟镓硒(CIGS)的温度系数仅为-0.1~0.3%,碲化镉(CdTe)温度系数约为-0.25%,均优于晶硅电池。
上图是模拟5-85℃下,同一块晶硅太阳能电池的的电流、电压、功率输出
、IEC 61730:2016新标准的TUV认证,为腾晖组件产品推向全球市场打下了有力基础。 多主栅技术优势主要在于: 1.电池栅线采用网格状图案设计,不仅减少11%以上串联电阻,还可减少对电池隐裂的
,组件选用180块高效300W单晶组件,18块串联10并联,总功率54KW,215块蓄电池2V500AH,初期投入45万。
柴油机和油光互补系统对比:
由于近年来并网光伏系统及
在一些远离大电网的偏远山区和海岛,人们为了生活方便,常用燃油发电机来提供电源。近年来随着组件,蓄电池,逆变器等光伏发电设备价格下降,光伏系统的成本逐年下降。在当前柴油价格趋于上涨的形势下
,通常需要300-400多个2V的铅酸电池串联才能达到。大量的蓄电池串联,在其充放电过程中难免会有个体差别,会导致严重的蓄电池充电和出力电能不均的问题,最终导致系统故障。因此在大型蓄电池储能系统里