储能行业的短板困境在大型储能系统中,成千上万个电芯串并联运行,系统整体性能却往往被最弱的那一个所限制。这种"木桶效应"导致:● 容量释放受限:电池组无法发挥全部潜能;● 电芯老化不均:个别电芯提前
依然无法彻底解决。如何缓解乃至根除“木桶效应”,一直是储能行业亟待攻克的技术痛点。近年来,部分厂商引入主动均衡和簇级管理等先进策略,例如阳光电源推出的液冷系统,可通过毫秒级调节实现新旧电池混用,显著
第一性原理与机器学习交叉研究的能力,能够运用所学知识解决材料科学中的实际问题,并为未来的研究工作奠定坚实的基础。深度学习材料设计实践熟练掌握 Python 编程基础及 Pytorch 深度学习框架,能够
模拟轨迹中以低冗余方式提取多帧结构文件。以及MACE的超参数介绍和使用经验,MACE模型与DeePMD模型的对比,Libtorch与
LAMMPS软件的编译,机器学习力场领域的ChatGPT的使用
柔性钙钛矿基单结和串联太阳能电池的功率转换效率(PCE)已分别超过25%和29%,被认为是便携式和可穿戴光电子器件(包括建筑一体化光伏应用)的理想选择。与其他薄膜技术和主流硅技术相比,钙钛矿薄膜
可通过低温工艺和基于溶液的卷对卷制造制备,具有优异的功率重量比和高成本效益。尽管取得了这些进展,但柔性钙钛矿太阳能电池(f-PSCs)的商业化仍受到与器件配置中每一层相关的若干挑战的限制,包括钙钛矿活性层
改善了近红外响应和光电性能。研究团队在领挚科技TFT背板上构建了12×12实时神经形态近红外成像阵列,通过钙钛矿光电器件读取系统集成,实现了复杂环境中物体识别和运动感知的硬件级时空融合。
/adma.202502015中国科学院大学孟祥悦、吴玮桐和苏州大学李亮团队成功开发基于新型无铅锡基钙钛矿的高分辨率神经形态成像传感器技术。该工作通过引入Sn→B供体-受体键相互作用,有效抑制了锡离子的氧化,显著
哪些努力与调整?轻质刚性组件会持续被市场认可和需要么?未来的轻质组件又会是什么样子?6月11-12日,上海虹桥绿地铂瑞酒店 二楼会议室7(距离SNEC展会会场步行650米),我们将一一为您解答。您也可以关注中能创官方视频号“中能创光电科技有限公司”,我们将同步为您直播。
分子式为AMX3的三维(3D)钙钛矿以其优异的光电特性而闻名,但其设计受限于可用于模板化3D角共享结构的A位阳离子范围较窄,许多可行的方案已被探索。这些材料在环境条件下也面临结构不稳定性。相比之下
,具有相同化学式的3D六方类钙钛矿可以通过一系列角共享和面共享的八面体结构选项提供更高的稳定性和更丰富的结构多样性,从而为结构设计提供更多可能性;然而,合成复杂性和宽带隙等挑战阻碍了迄今为止光电性能的
,控制结晶动力学,获得高质量、大晶粒薄膜挥发性添加剂(Volatile Additives):
如甲基氯化铵(MACl),在结晶过程中形成中间体,退火时挥发,留下高结晶度的纯α相FAPbI₃。电荷
(EIS)研究界面电荷传输和复合界面表征:X射线光电子能谱(XPS)、开尔文探针力显微镜(KPFM)、飞行时间二次离子质谱(ToF-SIMS)等,深入理解界面化学、能级排列、离子迁移等,对效率和稳定性
efficiency tables》(Version
66)——这一全球公认的太阳电池权威纪录表中,彰显了国际权威学术界对天合光能技术成果的高度认同。同时,实验室自主研发的大面积钙钛矿/晶体硅两端叠层电池
技术领域取得的又一重大突破,进一步巩固了公司在前沿光伏技术领域的领先地位。此次发布的叠层组件均基于210mm大尺寸叠层电池技术,在此基础上,技术团队针对钙钛矿材料的本征特性,重点开发了柔性低遮光电
二甲基甲酰胺/二甲基亚砜(DMF/DMSO)混合溶剂相比其对应的单一溶剂表现出更严重的降解,这是由于溶液中前驱体物种的水解、氧化和去质子化反应之间复杂的相互作用所致。因此,将2-硫脲(Th)引入前驱体
中,以抑制这些副反应链,并有效减轻阳离子和碘离子(I⁻)的有害降解。Th的协同效应使其能够与未配位的Pb²⁺结合,调节结晶过程,从而实现低缺陷密度的高质量薄膜。因此,基于Th的前驱体展现出更长的存储
倒置器件在最大功率点连续运行1015小时后仍保持95%的初始效率。该工作为解决钙钛矿光伏及其他光电器件的本征稳定性问题提供了普适性方案。杯芳烃与功能层相互作用的理论与实验研究。a) 4TBP、C4A
7Li核磁共振谱。e) 含/不含Li-TFSI的C8A溶液1H核磁共振谱。f,g) 含/不含C8A的Ag电极薄膜Ag 3d
X射线光电子能谱。h) 基于C8A与多组分离子主客体相互作用的迁移抑制