前沿光伏技术之多结叠层太阳电池:让阳光发挥更大能量的黑科技

来源:财报资讯网发布时间:2025-09-12 16:58:11

一、引言

太阳每天向地球输送的能量足以满足人类全年的电力需求,但传统太阳电池只能捕获其中一小部分。如何让每一缕阳光发挥最大价值?多结叠层太阳电池(Multijunction Solar Cells, MJSCs)正是科学家们给出的终极答案之一——这种 " 叠叠乐 " 式的光伏技术,正以接近 50% 的超高效率刷新能源转换的效率纪录,且理论效率可以超过 65% [ 1 ] 。Fraunhofer ISE 研发的基于晶片键合四结聚光太阳电池在 AM1.5D 光谱和 665 倍聚光条件下创下 47.6% 的效率记录 [ 2 ] ,远远高于单结太阳电池 33% 的 Shockley-Queisser 极限效率 [ 3 ] 。

MJSCs 最初是为太空任务而生。在太空中,面积和重量是关键限制,而高效率的多结电池完美解决了这一问题。例如,国际空间站的太阳能板就采用了多结叠层技术,即使经过 15 年辐射暴露,仍能保持 88% 的初始效率。如今,这项技术正在走向地面,特别是在聚光光伏(CPV)系统中。通过透镜或反射镜将阳光聚焦到电池上,CPV 能够以更小的电池面积产生更高的功率。在阳光充足的地区(如中东),CPV 电站的效率和性价比已接近甚至超过传统硅基电站 [ 4 ] 。

二、多结叠层电池:光伏界的 " 叠叠乐 "

传统单结太阳电池可以利用的光谱部分由其半导体材料的带隙决定。能量低于带隙的光子不会被吸收,因此总是会损失。能量高于带隙的光子通常被很好地吸收,但带隙之外的多余能量会因热化过程而损失。MJSCs 的核心思想是 " 分工协作 "。通过在基板上堆叠多个不同带隙的半导体层,在各个半导体层之间制备隧穿二极管,用作不同子电池之间的低欧姆和高度透明的互连。如图 1 所示 [ 5 ] ,各个半导体材料的带隙经过精确设计,每一层专门捕获从近紫外到中红外的不同波段的能量,这种多带隙方法通过减少热化损失和最大限度地吸收光子,显著提高了太阳电池的整体效率。III-V 族半导体材料由元素周期表第 III 族和第 V 族元素的化合物组成,由于材料种类繁多、带隙可调、高载流子迁移率和优异的光电性能,尤其适用于 MJSCs [ 1 ] 。如图 2 所示,磷化铟镓(InGaP)、砷化镓(GaAs)、磷化铟(InP)、砷化铝镓(AlGaAs)、砷铝铟(InAlAs)、磷化镓铟砷(GaInAsP)、氮化镓铟磷化物(GaInNP)、砷铟(InGaAs)、砷镓铋(GaAsBi)和锗(Ge)等材料已被广泛用作 MJSCs 的不同子电池 [ 6 ] 。

图 1. 具有 1.9 eV、1.4 eV、1.2 eV 和 0.9 eV 结的 4J 叠层电池的示意图结构。1.2eV 和 0.9eV pn 结基于 GalnNAsSb [ 5 ] 。


图 2. 由 III-V 半导体材料制成的不同多结太阳电池的示例草图 [ 1 ]

MJSCs 结构的定义分为三个步骤。首先,基于理论计算确定最佳带隙组合(见图 3);其次,选择合适的材料作为子电池;最后,实现整体架构 [ 1 ] 。目前已经采用了各种制造技术来开发 MJSCs,如外延生长、晶片键合和单片集成,每种技术在控制缺陷密度、提高可扩展性和效率优化方面都有其独特的优势和局限性 [ 6 ] 。

外延生长是制造 MJSCs 最广泛采用的方法,沉积半导体层时可以精确控制其厚度和成分。常用的外延生长方法包括金属有机化学气相沉积(MOCVD)、金属有机气相外延(MOVPE)、分子束外延(MBE)和液相外延(LPE)。晶片键合是制造倒置变质(IMM)MJSCs 的关键技术,其中子电池使用直接或粘合键合方法集成。这种技术有利于组合不同的材料,克服外延生长方法中经常出现的晶格失配限制。虽然晶片键合为高效器件制造提供了一条途径,但它也带来了界面缺陷、错位和键合良率问题等挑战,需要进一步优化以实现大规模生产。单片集成是在单个基底上直接生长半导体层,确保晶格匹配,以防止形成失配位错并提高器件性能,这种技术有利于开发紧凑、高效的 MJSCs,其中所有结都在单个处理步骤中顺序生长。虽然单片集成为高效、高稳定性的 MJSCs 提供了一种有前景的方法,但必须解决材料兼容性、应变管理和成本考虑等挑战,以提高其商业可行性 [ 6,7 ] 。

图 3. 在 AM1.5g(1×1000W/m2)和 500 倍聚光 AM1.5d(500×1000W/m2)条件下不同 pn 结(子电池)数量的理论效率极限 [ 1 ]

三、挑战与未来:降低成本是关键

MJSCs 是太空应用的首选,因为它们具有无与伦比的抗辐射性、高功率重量比和在极端环境中的长期稳定性。太空中没有大气吸收和散射,这使得 MJSCs 能够在没有光谱失真的情况下以最大的理论效率运行。它们在强烈的太阳辐射下保持高性能的能力使其成为卫星动力系统、太空探测器和地外探索任务的理想选择 [ 8 ] 。但是 MJSCs 在陆地环境中的使用仍然有限,主要由于高制造成本和复杂的制造工艺。

尽管与传统的硅基太阳电池相比,MJSCs 的效率更高,但每瓦的成本仍然要高出几十倍 [ 1 ] ,这限制了它们在一般商业或住宅用途中的广泛使用。但是聚光光伏(CPV)系统的出现使得 MJSCs 的地面应用不再遥不可及,CPV 系统使用廉价的聚光光学元件,如镜子或透镜,将光聚焦在小面积的太阳电池上,电池在高太阳强度下(500~1000 suns)运行,从而增加太阳电池的入射功率 [ 6 ] 。太阳电池面积相对较小,从而节省了昂贵的半导体材料,并允许使用更复杂、更昂贵的多结太阳电池 [ 9 ] 。CPV 系统对于空间有限的应用尤其有益,例如屋顶或公用事业规模的太阳能发电场。进一步研究优化 MJSCs 和 CPV 系统之间的集成可以为高效太阳能发电开辟新的可能性。

四、结语

从太空到地面,多结叠层电池正重新定义太阳能的极限。这项融合量子物理、材料科学与光学工程的杰作,不仅承载着人类对清洁能源的终极想象,更在默默书写着一个全新的能源时代——在那里,阳光将比我们想象的更加 " 有力 "。

参考文献

[ 1 ] Philipps S P, Bett A W. III-V Multi-junction solar cells and concentrating photovoltaic ( CPV ) systems [ J ] . Advanced Optical Technologies, 2014, 3 ( 5-6 ) : 469-478.

[ 2 ] Helmers H, Höhn O, Lackner D, et al. Advancing solar energy conversion efficiency to 47.6% and exploring the spectral versatility of III-V photonic power converters [ C ] //Physics, Simulation, and Photonic Engineering of Photovoltaic Devices XIII. SPIE, 2024, 12881: 6-15.

[ 3 ] Rühle S. Tabulated values of the Shockley – Queisser limit for single junction solar cells [ J ] . Solar energy, 2016, 130: 139-147.

[ 4 ] Baiju A, Yarema M. Status and challenges of multi-junction solar cell technology [ J ] . Frontiers in Energy Research, 2022, 10: 971918.

[ 5 ] Aho A, Isoaho R, Hytönen L, et al. Lattice ‐ matched four ‐ junction tandem solar cell including two dilute nitride bottom junctions [ J ] . Progress in Photovoltaics: Research and Applications, 2019, 27 ( 4 ) : 299-305.

[ 6 ] Raisa A T, Sakib S N, Hossain M J, et al. Advances in multijunction solar cells: an overview [ J ] . Solar Energy Advances, 2025: 100105.

[ 7 ] Cariou R, Benick J, Beutel P, et al. Monolithic two-terminal III – V//Si triple-junction solar cells with 30.2% efficiency under 1-sun AM1. 5g [ J ] . IEEE Journal of Photovoltaics, 2016, 7 ( 1 ) : 367-373.

[ 8 ] Li J, Aierken A, Liu Y, et al. A brief review of high efficiency III-V solar cells for space application [ J ] . Frontiers in Physics, 2021, 8: 631925.

[ 9 ] Wiesenfarth M, Anton I, Bett A W. Challenges in the design of concentrator photovoltaic ( CPV ) modules to achieve highest efficiencies [ J ] . Applied Physics Reviews, 2018, 5 ( 4 ) .


索比光伏网 https://news.solarbe.com/202509/12/50008449.html
责任编辑:周末
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
浙江大学王勇 AEL: 离子位点竞争策略用于增强钙硅叠层光伏器件中宽带隙钙钛矿的稳定性来源:先进光伏 发布时间:2025-12-23 11:00:37

论文概览宽带隙钙钛矿的稳定性是实现高效钙钛矿/硅叠层光伏器件的关键,但由于宽带隙钙钛矿中卤化物偏析导致的不稳定性仍然是一个重大挑战。结论展望本研究创新性地提出了一种离子位点竞争策略,通过精心设计的多Cl-源前驱体组分优化,实现了Cl离子在钙钛矿晶格与间隙位点的可控分布。

溴功能化Bz-PhpPABrCz+Bz-PhpPACz二元混合SAM在纹理化钙钛矿/硅叠层太阳电池上实现31.4%效率来源:钙钛矿-晶硅叠层太阳电池TSCs 发布时间:2025-12-22 17:25:37

Huang等人关键发现:溴杂质意外提升性能意外发现:商用SAM材料4PADCB中意外含有溴代杂质,这些杂质反而提升了叠层电池性能。低滞后性:Mix和C-4PADCB电池滞后明显小于纯Bz-PhpPACz(图5B)。

Science最新:钙钛矿层在工业纹理硅片上的一致性生长以制备高稳定性叠层太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-19 13:55:59

前言:钙钛矿-硅串联太阳能电池的实验室效率已接近35%。我们采用基于蒸汽的共蒸发方法,在金字塔纹理硅基底上均匀沉积高质量的钙钛矿层,从而制备出效率、稳定性和可重复性都得到增强的钙钛矿–硅串联太阳能电池。利用TFPTMS调控吸附动力学带来的薄膜质量提升,钙钛矿–硅叠层太阳能电池在工业纹理化硅片上实现了超过31%的光电转换效率,并具有增强的可重复性。钙钛矿–硅叠层太阳能电池的EQE谱和反射曲线。

透明导电电极对钙钛矿-硅叠层太阳能电池性能的影响来源:钙钛矿材料和器件 发布时间:2025-12-18 13:35:54

牛津大学的一位研究人员发现,透明导电电极可使钙钛矿-硅叠层太阳能电池效率降低超过2%,损失与电阻、光学效应和几何因子权衡有关。基于此,Bonilla提出了一个统一的光学-电气模型,考虑了双端钙钛矿-硅叠层太阳能电池设计中的这些因素。而叠层电池通常采用中间或者背TCEs,这进一步降低性能。据Bonilla称,这些损失与实验结果一致,显示在氧化铟锡沉积、抗反射涂层或原子层沉积屏障层中微调,直接导致先进叠层电池的性能可测量提升。

瑞士联邦材料科学与技术实验室Fu Fan NC:25.4%!柔性全钙钛矿叠层太阳电池!PEDOT:PSS垂直相分离优化!来源:钙钛矿人 发布时间:2025-12-16 16:39:52

柔性全钙钛矿叠层太阳能电池(TSC)有望为便携和航空航天应用提供轻量化电源,但其性能仍受限于窄带隙(NBG)子电池中的界面损耗,尤其是源自聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)的损失。

带有立体互补设计的钙钛矿-硅叠层太阳能电池效率达到32.3%来源:钙钛矿材料和器件 发布时间:2025-12-15 21:48:44

中国研究人员开发了采用立体互补界面设计的钙钛矿-硅叠层太阳能电池,实现32.12%的认证效率并提升长期稳定性。该策略优化了钙钛矿晶格中的分子适配,提高了电荷传输和器件寿命。

AFM:高效宽带隙与叠层钙钛矿太阳能电池的异质界面接触优化来源:知光谷 发布时间:2025-12-12 19:10:55

钙钛矿基叠层太阳能电池是下一代光伏技术的关键。作为核心组成部分,载流子传输层(CTL)在单结与叠层钙钛矿电池中均面临界面接触不良和载流子传输效率低等问题。

新加坡国立大学侯毅Nature:氰酸盐三结太阳电池的超宽带隙钙钛矿来源:矿物薄膜太阳能电池 发布时间:2025-12-10 14:29:30

背景介绍三结太阳能电池是突破单结电池效率极限的核心方向,超宽禁带钙钛矿作为顶层吸收体的瓶颈制约其发展。目前钙钛矿/硅双结电池效率已达33.7%,但三结电池的关键瓶颈是缺乏高性能UWBG顶层电池。虚线框区域为设备的检测间隙。a,不含氰酸盐和含5%氰酸盐的钙钛矿晶体结构计算结果。a,不同浓度溴和氰酸盐的VOC对比。总结与展望首次证实OCN可稳定嵌入钙钛矿晶格,利用其与Br的晶格匹配性,诱导适度畸变,同步优化元素分布与缺陷抑制。

这家企业申请异质结/钙钛矿叠层发明专利来源:摩尔光伏 发布时间:2025-12-08 16:22:16

近日,国家知识产权局信息显示,中建材浚鑫科技有限公司申请一项名为“一种超高效异质结与钙钛矿叠层光伏组件”发明专利,申请公布号:CN121038506A,申请日期为2025年8月,申请公布日2025年11月28日。

弗劳恩霍夫ISE基于行业标准底TOPCon电池实现与钙钛矿叠层30.6%的效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:17:45

弗劳恩霍夫ISE的研究人员开发了一种采用TOPCon底电池、标准纹理前表面的钙钛矿-硅串联太阳能电池。他们的结果表明,TOPCon底部电池在分流电阻率方面可与串联器件中的异质结电池相当,支持可扩展且具成本效益的工业生产。“证明TOPCon2电池设计及其精益工艺流与钙钛矿/硅叠层集成兼容,标志着实现工业叠层太阳能电池生产的成本效益高峰。”弗劳恩霍夫ISE的其他研究人员最近首次将所谓的掩膜板前金属化方法应用于叠层太阳能电池的开发。

正信光电 | 让每一瓦电力更高效的光伏科技制造工厂来源:正信光电 发布时间:2025-12-04 14:57:25

作为全球领先的光伏组件制造商,正信光电自成立以来,始终致力于通过创新的技术和精密的生产工艺,推动绿色电力的普及与应用。正信光电始终坚持技术创新和质量至上的原则,通过精密的工艺和智能化的生产管理,我们为每一块光伏组件注入可靠的动力,让每一瓦绿电都更高效。正信光电,凭借卓越的工艺与技术,让光伏组件走向未来。