【科普】太阳能光热与储热

来源:CSPFocus光热发电资讯发布时间:2020-09-01 17:49:29

太阳发出的太阳辐射是地球上所有自然能量的来源。但是,大多数的太阳辐射会反射回太空。到达地球表面的辐射只有三部分,即可见光,紫外线和红外辐射。接收到的太阳辐射中约40-45%位于400至700nm之间的可见光谱中。在700nm–1mm之间的红外线占最大份额,为50–55%,而在100–400nm之间的紫外线辐射则最小,为5–10%。

近年来,我们越来越善于使用太阳能电池板利用可见光。但是,我们不能否认,热能仍然是主要的组成部分,而且可能是最古老的能源。太阳能光热(CSP)系统使用反射镜从入射的红外辐射中收集热能。光热如何工作?所有太阳能光热(CSP)系统都通过使用多个反射镜阵列将大面积的散射阳光聚焦到热接收器上来工作。首先,阳光照射到镜子阵列上。然后,镜子收集阳光并将其反射(重定向)到接收器。大多数现代反射镜都能跟踪太阳的位置以收集最大量的阳光。接收器实际上是装满工作流体的管道。因此,根据反射镜的类型和所使用的流体,工作流体的温度会升高到500度(甚至更高)。最终,流体流向热能发电系统,在此流体中的热量通过换热产生蒸汽,从而驱动汽轮机发电。术语“工作流体”是指通过流动传递热量的流体。

图1 – 塔式太阳能光热电站

图1显示了定日镜将太阳光聚焦在中央接收器上。光热电站产生的能量实际上可以满足任何需求,特别是在阳光充足的地方。例如,世界上最大的光热电站集群在摩洛哥。它的容量为500MW,可为110万摩洛哥人供电。

现有各种各样的光热系统可以利用太阳的热能,常见的集热器技术是:槽式集热器,线性菲涅尔集热器,太阳能塔式集热器,碟式集热器。

储热(TES)系统

太阳能的主要缺点是在特定时间段内的不连续性。例如,遮蔽日光的云层抑制了太阳能的发电。因此,将太阳能光热电站与储热系统集成在一起是解决此问题的绝妙窍门。

与其他大多数能源系统类似,(过量的)热能在明媚的阳光下存储起来,在太阳强度可忽略或不可用时释放。目前共有三种类型的储热系统:显热储热,潜热储热,热化学储热。

显热存储

在能量存储期间,通过增加存储材料的温度来存储热能。另一方面,通过降低材料的温度从材料中吸收热量以发电。

但是,该材料不会发生任何相变。换句话说,材料不会在物质的三种状态(固体,液体和气体)之间转换。由于该过程不涉及相变,因此工程师需要具有高比容量、能量密度和导热率的材料,这也是这种类型材料的缺点。更重要的是,整个过程不会改变存储材料的化学性质。

显热存储中使用的固体材料以低成本提供了高导热率(0.05–5$/kg)。它们还为加热过程提供了广泛的温度范围(200–1200°C)。混凝土和陶瓷是受欢迎的选择。

固体固然有其优势,但液体存储材料主导了整个行业。像太阳盐和HitecXL这样的熔融盐是两个最常见的例子。顾名思义,这些盐虽然在室温(25°C)下为固体,但在高温下会熔化成液体。此外,熔融盐无毒且热稳定。

某些光热电站甚至采用了第三种物质状态来储热,即利用压缩空气或蒸汽等气态物质。尽管这种材料具有经济性,并且可以提供较大的工作温度范围,但与液态或固态材料相比,它们的导热系数和能量密度都较低。

潜热储存

在潜热存储中,当存储材料在恒定温度下经历相变时,热能被存储/提取。简而言之,当材料熔化/凝固/蒸发/冷凝时,它会释放或存储所需要的热能。

像显热存储一样,它也是纯物理过程,材料的化学性质没有变化。这些材料称为相变材料(PCM)。由于材料在相变过程中存储/释放,因此它们可以在较小的温度范围内进行能量交换,并显示出更高的能量密度。

然而,它们的主要缺点是低导热率导致相之间的过渡速度极慢。为了解决这个问题,设计人员混合了诸如石墨之类的添加剂以提高导热率,并通过控制添加剂的剂量来改变导热率。

虽然有更好的选择,例如由金属合金制成的材料,但价格昂贵。俗话说“天下没有免费的午餐!”

热化学储热

与前两个储热系统不同,可逆的吸热化学反应会消耗太阳能。由于发生化学反应,使新形成的产物存储太阳能。当这些新产品转换回原始反应物时,它们释放了储存的太阳能。

“光合作用—呼吸”是热化学储热的一个很好的例子。一方面,光合作用利用太阳能(尽管不是红外范围)产生淀粉(食物)和氧气。另一方面,在有氧情况下,呼吸作用会分解相同的食物,从而释放能量和二氧化碳。就像之前说的那样,太阳是地球上所有能量形式的来源!

与光合作用—呼吸相似,金属氢化物,碳酸盐系统,氢氧化物系统等将太阳的热能(红外范围)转换为化学能以进一步使用。根据反应形式的不同,产品可能带来其他麻烦,例如异常缓慢的反应速度。此外,某些反应可能需要催化剂(外部刺激)来进行反应。

将储热与太阳能光热相结合

既然我们已经分别讨论了这两个概念,那么在本节中,我们将看到它们是如何相互借鉴的。根据存储材料是否可以流动(移动),集成过程大致分为两类-主动和被动系统。图2是描述分类的流程图

图2 - TES系统集成分类

主动系统它们很活跃,因为存储材料流动以通过对流吸收和释放热量。存储材料通常是液体,气体不是首要选择。主动系统中的两个细分是:直接系统和间接系统。

直接系统—在直接系统中,存储介质还充当传热流体(HTF)或工作流体的角色。在吸热期间,流体直接存储在热罐中。在放热和发电期间,流体会通过动力系统,该系统会吸收热量,然后流入冷却箱中以进行再利用。上图是描绘主动直接系统的流程图。尽管此系统不需要热交换器,但选择正确的存储材料至关重要。例如,熔融盐就可以满足良好的传热流体以及良好的存储材料的要求。

间接系统—与直接系统不同,间接系统中的传热流体和储热材料不同。如上图所示,在吸热阶段,来自冷罐的储热材料流入热交换器进行间接加热并存储在热罐中。为了释放热量并发电,需要反转储热材料的流动方向。

被动系统

图3 – 被动式储热传输系统

与主动系统相比,被动系统的存储材料通常为固体,且是固定不动的。传热流体向/从储热材料释放/吸收热量(请参见图3)。流体的选择随光热电站中使用的热能系统的类型而变化。但是,始终需要具有高导热率的流体。

结论

总之,太阳能光热电站/系统的效率基于以下两点:反射镜可以吸收多少太阳热量,储热系统可以将多少收集来的热量传递到发电单元进行发电。

因此,有效能量产出取决于以上两个部分。这项成熟技术有潜力改变干旱地区,因为在干旱地区,太阳是主要的能源。此外,有些混合系统同时使用太阳能光热系统及其储热系统,以及光伏电池板及其电池技术,以同时利用可见光和红外光!这更加令人期待。

索比光伏网 https://news.solarbe.com/202009/01/329936.html

责任编辑:niupengzhen
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

JACS:π-共轭偶极结构:通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:知光谷 发布时间:2025-12-09 13:45:40

通过协同利用分子内偶极与锚定基团-金属电极间形成的偶极,Rh-Py可显著增强界面偶极矩,不仅有效强化内建电场,还优化了有机太阳能电池的欧姆接触,使其能量转换效率突破20%。此外,Rh-Py与Pb之间的强相互作用可有效钝化钙钛矿薄膜中的Pb缺陷。

郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。

王开&马静&刘生忠AEL:带隙与晶体质量的协同提升实现高效稳定钙钛矿/硅叠层太阳能电池来源:知光谷 发布时间:2025-11-28 10:23:55

宽带隙钙钛矿材料对叠层太阳能电池至关重要,但富Br软晶格可能引发严重的离子聚集与迁移,显著损害器件效率与稳定性。由此,晶体质量提升的钙钛矿薄膜表现出更高的离子迁移能垒和增强的界面载流子提取能力。这些协同效应使单结钙钛矿太阳能电池效率高达23.24%,单片钙钛矿/硅叠层电池效率达30.16%,并在热、湿、光应力下展现出优异的稳定性。

南航赵晓明AEM:调控配体吸电子效应设计配体反应性以实现户外稳定的钙钛矿太阳能电池与组件来源:知光谷 发布时间:2025-11-27 13:47:25

2D/3D钙钛矿异质结构提升了钙钛矿太阳能电池的性能。本文南京航空航天大学赵晓明等人研究了芳香铵配体的吸电子强度对钙钛矿界面稳定性的影响。此外,组件在30天户外运行中保持稳定的功率输出,显示出其在实际应用中的潜力。研究亮点:配体吸电子能力调控界面稳定性:通过杂环中氧原子数量的增加,系统调控芳香铵配体的吸电子能力,最强吸电子配体ABDI有效抑制2D相形成并阻止离子互扩散。

AFM综述:面向极端与新兴应用的稳健钙钛矿太阳能电池来源:知光谷 发布时间:2025-11-25 14:38:44

钙钛矿太阳能电池因其轻质、超高功率转换效率和可调光电特性,为超越传统光伏技术的应用提供了前所未有的机遇。然而,目前关于PSCs在这些特殊环境中的研究仍较为零散,且对其在耦合外部应力下的耐受机制缺乏深入理解。

段玉伟&彭强AM:原位自交联聚合与开环加成反应精密构建内部封装层,实现高效环保的钙钛矿太阳能电池来源:知光谷 发布时间:2025-11-25 14:32:26

在钙钛矿顶部表面覆盖内部封装层对于提升钙钛矿质量、实现高性能钙钛矿太阳能电池至关重要。本文成都理工大学段玉伟和彭强等人通过硅氧烷基团的自交联聚合和环氧基团的开环加成反应,原位合成了一种新型内部封装层,以克服长期以来被忽视的IEL缺陷,例如消除副产物的不利影响,以及在提高钙钛矿质量和最小化Pb泄漏之间取得平衡。

陈永胜院士&刘永胜Nat. Photon.:钙钛矿太阳能电池埋底界面自发形成二维钙钛矿提升结晶均匀性与缺陷钝化来源:知光谷 发布时间:2025-11-25 14:22:37

埋底界面尤其存在结晶质量差、缺陷密度高等问题。本研究南开大学陈永胜和刘永胜等人提出一种一步法策略,通过在钙钛矿前驱体溶液中引入有机阳离子卤化物盐,诱导在埋底界面自发形成近相纯二维钙钛矿。

上海交通大学戚亚冰团队Joule:双空穴传输层设计实现超柔性钙钛矿太阳能电池效率与稳定性协同提升来源:先进光伏 发布时间:2025-11-18 09:43:22

上海交通大学戚亚冰团队研究证实,在氧化铟锡透明聚酰亚胺基板上联合使用氧化镍与膦酸自组装单分子层作为空穴传输材料,可显著提升器件稳定性。研究意义攻克稳定性瓶颈:首次实现超柔性钙钛矿电池在空气中T80超过260小时的突破性稳定性,为柔性器件的实际应用扫除关键障碍。深度精度1.本研究成功制备了基于NiOX/2PACz双分子层空穴传输结构的超柔性钙钛矿太阳能电池。

浙江大学陈红征团队AM:兼容空气的溶剂浴热退火实现高效有机太阳能电池与大面积组件来源:先进光伏 发布时间:2025-11-14 10:54:17

针对这一挑战,浙江大学陈红征团队提出了一种新型后处理策略——溶剂浴热退火,实现了大面积OSC活性层在空气环境下的高效热处理。结论展望该研究开发的STA技术成功解决了传统热退火在空气中导致的薄膜降解与性能下降问题,通过PFD溶剂浴实现均匀加热与有效保护。该空气兼容、可扩展的退火策略为有机太阳能电池的大面积制造与商业化应用提供了切实可行的技术路径。

AEL:揭秘无机钙钛矿太阳能电池的离子动态:温度与有机层的影响来源:知光谷 发布时间:2025-11-10 13:45:21

金属卤化物钙钛矿虽具有优异光电性能,但离子迁移导致的稳定性问题亟待解决。研究指出,仅当离子响应完全激活时,两种方法才能可靠估计移动离子密度。BACE测量显示离子迁移率与浓度随温度升高而增加,并可通过离子飞行时间计算Br激活能;Mott-Schottky测试则呈现高频电子缺陷平台与低频离子缺陷平台。该研究成果为无机钙钛矿太阳能电池的稳定性优化提供了关键测量方法与理论依据,对推动钙钛矿光伏商业化进程具有重要意义。