如果想把食物保存得更久,我们往往会把它做成罐头,其实阳光也可以。
从上个世纪开始,科学家就开始研究“阳光罐头”——太阳能电池及其相关技术——以期更好地利用太阳能。但直至今日,各类“保鲜”技术依然还在探索之中。前不久,西北工业大学黄维院士团队在《自然·光子学》发文,报道了高效稳定层状钙钛矿太阳能电池的最新突破性进展。
26岁的晁凌锋是这一成果的第一作者之一。他告诉记者,要把阳光变成“阳光罐头”,第一步是需要把阳光转换成能够储存的状态——电。晁凌锋解释,太阳能电池的工作原理是一边接收阳光的能量一边将其转换成电能,然后电能会被输送到储存装置中,供后续使用,因此太阳能电池可以看成是一个“光-电转换器”。这种神奇的“转换器”有不少种类,他们研究的,是目前被学术界看好的“层状钙钛矿太阳能电池”。
黄维院士团队的成员之一,南京工业大学教授陈永华是晁凌锋的导师,他告诉记者,层状钙钛矿电池三维结构看起来有点像“魔方”,此次研究的主要创新点在于,通过增强层状分子间的作用力,增加了电池的稳定性,在光照下持续工作1000个小时,电池的光电转化性能衰减低于15%。
“从以往的层状钙钛矿电池成果来看,一般持续工作500到800个小时,性能就会衰减15%甚至更多。”晁凌锋解释,相比之下,此次的成果有效增加了这类太阳能电池的稳定性,延长了它的工作时间,处于世界领先水平。
稳定性有那么重要吗?陈永华说,要做好太阳能电池,许多问题有待突破,“稳定性是其中一个很重要的方面,总不能允许电池很快就罢工了,寿命问题一定要考虑”。他比喻道,以前层状钙钛矿材料太阳能电池的每一层之间的分子是“靠在一起”,这种不太紧密的作用力难以对抗水、热以及紫外光等的侵蚀,使层状钙钛矿电池很容易分解“罢工”;而他们这次想办法让分子紧紧地“抱在了一起”,从而增强了分子间的作用力,继而增加了电池的稳定性。“这项成果让此类太阳能电池距离真正投入使用又迈进了一步。”陈永华说。
然而,取得这项成果的过程是相当曲折的。“我从研究生一年级就开展了相关研究,直到研究生毕业成果都还没有发表。”现正在西北工业大学读博士一年级的晁凌锋告诉记者:“真是一直在失败,只有一次成功。”
去年夏天来临之前,是他最崩溃的时候。“我们的研究成果需要送到北京的中国计量院做第三方验证才能发表。明明在实验室里测得都很成功,但到了北京就是测不出来了。”晁凌锋知道,世界上还有很多优秀的课题组在攻关这个稳定性的问题,如果自己的成果不能最先发表,就会失去价值。问题出在了检测设备的连接环节,为了解决这个问题,在3个月的时间里,他往北京跑了多次,两度推翻重建检测连接设计,但一直走不出科学的迷宫,“同时我还在准备6月份的研究生毕业论文答辩”。
比这一切更让他难以接受的是,夏天就要来了。层状钙钛矿材料本身“怕热”,这意味着,如果不赶在夏天之前做完检测验证,成果的最好性能指标将大打折扣,他们将失去与国际团队竞争的筹码。
“虽然,我觉得陈永华老师也已经崩溃了,但他一直鼓励我们,半夜12点多还来实验室和我们交流”。最后,在一天夜里,他们走出了“迷宫”,最后通过了第三方验证。
和夏天赛跑的晁凌锋,终于在这个春天夺得了胜利果实。这一成果的发表不仅是对他意义重大,他说:“我看到了这项研究对世界能源领域的价值,所以才会一直坚持。”登上顶级期刊之后,他还在继续进行相关研究,“我们不仅希望大家认可这项研究,更希望通过这项成果激励更多人投身太阳能领域,这样我们的未来才会更好”。
原标题:我国层状钙钛矿太阳能电池研究获突破
光伏行业最新动态,请关注索比光伏网微信公众号:GF-solarbe
投稿与新闻线索联系:010-68027865 刘小姐:news@solarbe.com
随着太阳能技术的不断发展,钙钛矿太阳能电池(PSCs)因其卓越的光电特性而备受科学家的关注。尽管钙钛矿太阳能电池被认为是最有前景的光伏技术之一,然而与实验室规模的PSCs相比,大面积PSCs的效率较低、稳定性差以及可重复性问题成为阻碍其商业化的主要障碍。这一问题的核心在于如何在实际生产中提高大面积PSCs的性能,使其更具商业化可行性。
钙钛矿太阳能电池可再生能源技术作者开发了一个表面完全覆盖共价OH的金属氧化物基底,用于PSC的制造,以加强SAM的锚定位点。合成了一种具有高结合能量的分子,带有三甲氧基硅烷基团的(3,6-二甲氧基-9H-咔唑-9-基)三甲氧基苯硅烷(DC-TMPS),通过三齿锚定与化学吸附的OH表面形成高强度结合。最终得到的PSCs分别在0.08和1.01平方厘米下,实现了24.8%(经认证的24.6%)和23.2%的PCE。在标准照明条件下,经过1000小时湿热测试和在85°C下进行1200小时最大功率点跟踪操作后,设备分别保持了98.9和98.2
钙钛矿太阳能电池阿卜杜拉国王科技大学Randi Azmi,Stefaan De Wolf等人证明了长烷基胺配体可以在顶部和底部3D钙钛矿界面生成近相纯2D钙钛矿,并有效地解决了上述问题。在后接触侧,发现所使用的烷基胺配体通过与所使用的有机空穴传输自组装单层分子中的膦酸基团发生酸碱反应来加强与基底的相互作用,从而调节2D钙钛矿的形成。在此条件下,具有双面2D/3D异质结的倒置PSCs获得了25.6 % (认证25.0 % )的光电转换效率( PCE ),在85摄氏度的空气中经过1000小时的1- sun光照后,仍保留了95
钙钛矿太阳能电池钙钛矿太阳能电池是一种新型的太阳能电池,以其高效率、低成本和可柔性制备等优点而备受关注。在钙钛矿太阳能电池中,正式结构和反式结构是两种常见的器件结构。图片来自pexels钙钛矿太阳能电池正式结构组成:透明导
钙钛矿太阳能电池钙钛矿反式结构钙钛矿正式结构近日,南京大学现代工程与应用科学学院谭海仁课题组在大面积全钙钛矿叠层组件领域取得新突破,经国际第三方权威认证机构测试,其稳态光电转换效率高达24.5%,刷新了全钙钛矿叠层组件的世界纪录效率,为全钙钛矿叠层电池的量产和商业化应用奠定了技术基础。相关研究成果于2024年2月23日以“Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules”为题,发表于Science期刊。
全钙钛矿叠层组件光电转换效率太阳能电池近日,中国科学院合肥物质科学研究院固体物理研究所(以下简称固体所)、中国科学院光伏与节能材料重点实验室研究员潘旭、田兴友团队与韩国成均馆大学教授Nam-Gyu Park、华北电力大学教授戴松元合作,首次发现阳离子分布不均匀是影响钙钛矿太阳能电池性能的主要原因,并成功制备出“均匀化”的钙钛矿太阳能电池,获得26.1%的光电转换效率,认证效率为25.8%。相关研究成果日前在线发表于《自然》。
钙钛矿太阳能电池光电转换效率有机光伏(OPV)由于独特的机械柔性、可打印性和可调的光吸收特性,将成为物联网(IoT)、智能可穿戴设备上能源供给的绝佳候选者。近年来,由于在新型受体材料上的不断研究和开拓创新,停滞多年的OPV迎来了光电转换效率
有机光伏新型受体材料光电转换效率2020年,高瓴资本158亿入股光伏龙头隆基股份,让新能源赛道的投资再一次站上风口。多数研究认为,中国实现碳达峰、碳中和30.60目标需要的投资规模在100万亿元以上,而光伏产业在其中的占比颇高。更高效率、更低成本
钙钛矿电池极电光能光电转换效率在“双碳”目标引领下,我国能源绿色低碳转型步伐不断加快。广东作为全国经济第一大省,不仅是光伏技术创新的高地,更是产业转型升级的桥头堡。同时,随着粤港澳大湾区建设的深入推进,广东省的区位优势进一步凸显,正逐步成为引领全国乃至全球光伏产业未来发展的热土。
广东光伏产业光伏技术双碳目标2024年3月9日通辽市人民政府、科尔沁左翼中旗人民政府就合作推进花吐古拉装备产业园区,与旭合科技签订战略合作协议。通辽市市委书记孟宪东,市委秘书长莫日根巴图,副市长玄东升,科尔沁左翼中旗旗委书记于久彦,副旗长安双喜,华电内蒙古能源公司党委书记、董事长那仁满都拉,蓝丰生化董事长、旭合科技董事长郑旭,蓝丰生化副董事长、旭合科技副董事长、旭合清洁能源总经理崔海峰,蓝丰生化总经理、旭合科技CEO李质磊,蓝丰生化董事、旭合科技董事、CTO路忠林等相关领导出席了仪式。
旭合科技光伏技术N型TOPCon电池当地时间3月6日,一道新能澳洲产品发布会暨澳洲子公司开业仪式在悉尼隆重举行,一道新能高级副总裁曹晓荣先生,一道新能澳洲公司总经理郑毅先生、EUPD Research迪拜分公司合伙人Sangeetha Suresh女士,新南威尔士大学高级讲师姜雅洁博士以及来自澳洲当地百余名客户、经销商参与了本次活动。
一道新能光伏产业光伏技术3月1日,在2024年第十九届济南国际太阳能利用大会中,晶澳科技DeepBlue 4.0 Pro获颁鉴衡认证“领跑者+寒冷气候实证评定——A+等级”证书,这一殊荣再次验证了晶澳科技n型组件在极寒气候中的卓越性能,充分说明了晶澳科技在光伏技术研发和产品质量方面的领先地位。
晶澳科技光伏技术研发光伏组件