技术|串型聚合物太阳能电池创造新纪录

来源:网络发布时间:2019-04-12 10:39:33

为了把太阳光转换成电能,光伏太阳能电池使用了有机导电聚合物,这样,光线的吸收和转化都显示出巨大的潜力。有机聚合物的生产可以大批量、低成本进行,制成的光伏设备价格便宜、轻巧灵活。

在过去的几年中,做了大量研究工作,以提高效率,用这些设备把太阳光转换成电力,也包括开发出一些新的材料、器件结构和加工技术。

串型太阳能电池的多层结构

 串型太阳能电池的多层结构

有一项新的研究,在线发表于本周2月12日的《自然•光子学》(Nature Photonics,)杂志上,题为《串型聚合物太阳能电池特色是光谱匹配的低带隙聚合物》(Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer),这些研究人员来自加州大学洛杉矶分校(UCLA)亨利萨缪里工程和应用科学学院(Henry Samueli School of Engineering and Applied Science)以及加州大学洛杉矶分校加州纳米技术研究院(CNSI:California Nanosystems Institute),他们报道说,他们已经极大地提高了聚合物太阳能电池的性能,制成的设备具有新的“串联”结构,可以结合多个电池,具有不同的吸收频段。这种设备认证的光电转换效率是8.62%,在2011年7月就创造了这一世界纪录。

进一步,研究人员集成了一种新的红外吸收高分子材料,这种材料的开发者是日本住友化学公司(Sumitomo Chemical),就集成到这种设备中,这种设备的架构确实广泛适用,光电转换效率跃升至10.6%,这又是一个新的纪录,认证机构是美国能源部下属的国家可再生能源实验室(National Renewable Energy Laboratory)。

因为使用的电池具有不同的吸收频段,串型太阳能电池提供了有效途径,可利用更广泛的太阳辐射。然而,效率不会自动提高,因为只是简单地合并两种电池。这些材料用于串联电池,必须互相兼容 进行高效捕光,研究人员说。

到现在为止,串联设备的性能仍然落后于单层太阳能电池,主要是因为缺乏合适的高分子材料。加州大学洛杉矶分校工程学院的研究人员已经演示了一种高效单层和串联聚合物太阳能电池,它们的特色是一种低带隙共轭(low-band-gap-conjugated)聚合物,用于串联结构。这种带隙决定了哪部分太阳光谱聚合物可以吸收。

分子设计

 分子设计:光学性质和电子密度属于最高占有分子轨道(HOMO)和最低未占分子轨道(LUMO),属于PBDTT-DPP分子。a)PBDTT-DPP分子的化学结构。b)PBDTT-DPP紫外可见光吸收光谱和和P3HT薄膜,以及太阳辐射光谱。来源:加州大学洛杉矶分校

“设想一辆双层巴士,”杨阳(Yang Yang)说,他是加州大学洛杉矶分校工程学院材料科学与工程教授,也是这项研究的主要研究者。“这种巴士可以载一定数量的乘客,但是,如果你要增加第二层,加到第一层上方,那就可以容纳更多的人,但只占用相同大小的空间。这就是我们这里所做的,就是采用串联聚合物太阳能电池。”

为了更有效地使用太阳辐射,杨阳的研究小组堆叠起一系列的多个光敏层,以互补吸收光谱,这样就制成串联聚合物太阳能电池。他们的串联结构包含一块正面电池,具有更大的或更高的带隙材料,还有一块背面电池,具有较小或较低的带隙聚合物电池,连接是采用专门设计的夹层。

电流-电压特性和外部量子效率(EQEs)

 电流-电压特性和外部量子效率(EQEs),属于常规和倒置的单电池设备。

对比单层设备,这种串型设备可以更有效地利用太阳能,尤其是可以最大限度地减少其他能量损失。因为使用不止一种吸光材料,每一种可以捕获不同部分的太阳光谱,所以,这种串联电池可以维持电流,增加输出电压。研究人员说,这些因素可以提高效率。

“太阳光谱非常广泛,包括可见光和不可见光,红外光和紫外光,”土井修(Shuji Doi)说,他是住友化学公司研究小组经理。“我们感到非常兴奋的是,住友公司的这种低带隙聚合物促成了这一创造新纪录的效率。”

P3HT、IC60BA和PC71BM的化学结构

 a)P3HT、IC60BA和PC71BM的化学结构。b)倒置串联太阳能电池设备的结构(LBG型,低带隙)。c)倒置串联设备的能量图。来源:加州大学洛杉矶分校

“我们一直在做研究,串型太阳能电池只搞了很短的时间长度,比不上单结设备,”李刚(Gang Li)说,他是加州大学洛杉矶分校工程学院的研究成员,也是《自然•光子学》上那篇论文的合著者。“我们取得这样的成功,提高了效率,只用了短短的一段时间,这真正体现了叠层太阳能电池技术的巨大潜力。”

“一切都做好了,因为采用了一种成本非常低的湿法涂层工艺(wet-coating process),”杨阳说。“由于这个工艺可以兼容当前的制造技术,我预计,这一技术会在商业上具有可行性,就在不久的将来。”

这项研究开辟了一个新的方向,高分子化学家可以追求设计新材料,用于串联聚合物太阳能电池。此外,它标志着重要的一步,是迈向商用聚合物太阳能电池。杨阳说,他的小组希望达到15%的效率,就在未来几年。

这项研究资金来自美国国家科学基金会,美国空军部队科研办公室,海军研究办公室和美国能源部,美国国家再生能源实验室。

索比光伏网 https://news.solarbe.com/201904/12/305279.html

责任编辑:yangran
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
AM:聚合物纤维限域稳定钙钛矿纳米晶实现水合液晶中双手机性圆偏振发光来源:知光谷 发布时间:2025-12-09 14:18:08

然而,在水合手性液晶体系中实现钙钛矿纳米晶的双手机性圆偏振发光仍面临挑战,主要因其易受水分诱导降解和液晶有序性破坏的影响,从而限制了发光效率、结构完整性和手性光学调控能力。重要的是,通过设计非对称双层结构的反射特性,该复合材料可实现依赖观察方向的双手机性圆偏振发光。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

AEM:冷升华‘准固态’添加剂助力有机太阳能电池效率超20%、寿命近500小时来源:知光谷 发布时间:2025-12-03 09:25:55

在Y系列有机太阳能电池中,调控活性层在干燥过程中的形貌对于同时实现高效率与高耐久性至关重要。这些结果确立了物理状态编程的ISR添加剂作为一条通用路径,可协同优化OSCs的效率与稳定性,并为可扩展、无残留的形貌控制提供了机理指导。同时大幅提升效率与稳定性:mDF通过优化结晶动力学、收紧π-π堆积、增大相干长度并编程有利的垂直相分离,将PM6:L8-BO器件效率提升至19.28%,并将高温光照下的运行稳定性大幅延长至477小时。

浙大陈红征最新AM:主链衍生固态添加剂精准调控形貌,二元有机太阳能电池效率破20%并兼具厚膜兼容性来源:先进光伏 发布时间:2025-12-02 14:25:38

论文概览活性层形貌的精确调控是推动有机太阳能电池走向实际应用的关键。结论展望本研究提出了一种基于主链衍生结晶模板的通用形貌调控策略,通过设计小分子BDD-C6与DTBT-C6,成功实现活性层垂直相分布、结晶性与相纯度的协同优化,显著提升激子利用与电荷传输效率,最终在多个二元体系中实现20%以上的高效率并具备优异厚膜兼容性。该策略为高性能、可规模化制备的有机太阳能电池提供了新的材料设计与形貌工程思路。

武汉大学方国家Nature Conmmunications:氧化钇工程衬底提高了钙钛矿型太阳能电池的耐用性来源:矿物薄膜太阳能电池 发布时间:2025-11-26 09:00:11

首次明确指出并证实了“惰性”的FTO基底在操作应力下会发生离子扩散,是导致钙钛矿太阳能电池性能衰减的关键但被长期忽视的退化途径。CPD下降表明样品的功函数增加了,功函数增加通常意味着费米能级向下移动更靠近价带。图4.c为碘的信号从钙钛矿层向下方的SnO2和FTO层中渗透。

AEM:用于非富勒烯有机太阳能电池的两亲性聚合物共网络:调控分子堆叠实现高效下转换来源:知光谷 发布时间:2025-11-25 14:41:54

两亲性聚合物共网络由纳米尺度相分离的亲水和疏水域组成,近年来在被动光子学应用中引起关注。掠入射广角X射线散射表明,发光团的分子平面性和二面角通过范德华相互作用影响BHJ的堆叠,进而影响电荷传输。研究亮点:创新性引入APCNs作为多功能支架:利用其纳米相分离结构,成功将亲水性下转换发光团与疏水性PM6:Y6体异质结在空间上隔离,解决了材料不相容和能级不匹配问题。

北京师范大学薄志山NML:非稠环电子受体不对称侧链工程实现18.01%效率!厚膜有机太阳能电池性能突破新纪录!来源:先进光伏 发布时间:2025-11-20 09:32:16

论文概览为提升非稠环电子受体在厚膜有机太阳能电池中的性能,北京师范大学薄志山、李翠红团队与青岛大学刘亚辉、卢浩等合作,创新性地设计并合成了一种具有不对称苯基烷基胺侧链的非稠环电子受体TT-Ph-C6。研究意义提出不对称侧链工程新策略:通过苯基烷基胺侧链实现溶解性与堆积紧密度的平衡。结论展望本研究通过不对称侧链工程成功构建了高性能非稠环电子受体TT-Ph-C6,实现了18.01%的效率与80.10%的填充因子,并在200–300nm厚膜中仍保持领先性能。

南开大学陈永胜JACS:中心核扭曲构型受体实现20.60%效率:非辐射损失抑制与电流/填充因子双赢!来源:先进光伏 发布时间:2025-11-20 09:29:14

能量损失拆解:a-Th2Br的E仅为0.194eV,总能量损失低至0.525eV,为目前报道的最低水平之一。结论展望本研究通过中心核扭曲构型受体设计,成功实现了20.60%的高效率与0.194eV的低非辐射损失,突破了有机太阳能电池中“高发光必低迁移”的传统困境。

有机太阳能电池效率突破20%!青岛大学「国家杰青/长江学者」薄志山团队,最新AM!来源:新能源前沿 发布时间:2025-11-18 14:28:15

2025年11月10日,青岛大学刘亚辉教授、薄志山教授、路皓副教授等人在《AdvancedMaterials》上发表了题为“CustomizedMolecularDesignofaNovelWide-BandgapPolymerDonorBasedonBenzoTrithiopheneUnitwithOver20%SolarCellEfficiency”的研究论文。通过引入富勒烯受体PCBM构建三元器件,效率进一步提升至20.4%。形态学表征进一步佐证了上述结论。

AM:聚合物-钙钛矿微晶异质结用于自供电光学传感与通信来源:知光谷 发布时间:2025-11-18 09:23:56

准外延聚合物-钙钛矿界面是推动下一代光电子器件的关键,具有高效的激子解离和载流子传输特性。这些发现凸显了精密设计的聚合物-钙钛矿微晶异质结在突破当前性能瓶颈方面的重要性,为开发具有卓越性能和可靠性的可扩展、超快光子器件铺平了道路。研究亮点:成品率飞跃与界面创新:通过优化电极图案与准外延生长工艺,将功能性聚合物-钙钛矿微晶异质结的制备成品率从5%大幅提升至38%,为实现可扩展制备奠定了坚实基础。