绿色能源未来的新选择——有机太阳能电池

来源:新华网发布时间:2019-01-03 10:43:26
 从远古自然火的利用,到钻木取火,直至煤炭、石油的利用,人类文明的发展本质上是能源利用能力的发展。迄今为止,人类当代文明和经济发展很大程度上是建立在化石能源开发利用的基础之上。到了21世纪,由于对地球上不可再生的化石能源储量的担忧,以及化石能源在开采与使用过程中衍生的日益严峻的环境污染,使得人们将探索的目光投向绿色可持续的能源领域,比如太阳能、风能、水能……

“唯有解决高效利用太阳能的科学问题,才是人类永续发展之路。”南开大学化学学院陈永胜教授断言,“太阳是万物之母,能源之‘源’。每时每刻抵达地球的太阳光能量若能被利用万分之二,即可满足目前人类社会的全部能源需求。”也正因为如此,陈永胜教授和他的团队将自己的科研使命浓缩为一句话——“向太阳要能源”!


1.有机太阳能电池有望商业化应用

在人类利用太阳能的各项技术中,太阳能电池,即利用“光生伏打效应”将光能直接转换成电能的器件,是当前已获得广泛应用,同时也是最具发展前景的技术之一。

长期以来,人们更多地以晶硅等无机材料为基础制备太阳能电池。但是这种电池生产存在工艺复杂、成本高、能耗大、污染重等弊端。能否找到一种成本低、效率高、柔性强、环境友好的新型有机材料研制出新型太阳能电池,眼下正成为世界各国科学家孜孜以求的目标。

“以地球上最丰富的碳材料为基本原料,通过技术手段获得高效低成本的绿色能源,对于解决目前人类面临的重大能源问题具有极其重大的意义。”陈永胜介绍,从20世纪70年代起步的有机电子学及有机(高分子)功能材料的研究,为这一目标的实现提供了机遇。

与以硅为代表的无机半导体材料相比,有机半导体具有成本低、材料多样性、功能可调、可柔性印刷制备等诸多优点。目前,基于有机发光二极管(OLED)的显示屏已经实现了商业化生产,并在手机和电视显示屏中获得广泛应用。

而基于有机高分子材料作为光敏活性层的有机太阳能电池,具有材料结构多样性、可大面积低成本印刷制备、柔性、半透明甚至全透明等优点,具有无机太阳能电池技术所不具备的许多优良特性。除了作为正常的发电装置外,在其他领域如节能建筑一体化、可穿戴设备等方面亦具有巨大的应用潜力,引起了学术界和工业界的极大兴趣。

“特别是近年来,有机太阳能电池的研究获得了突飞猛进的发展,光电转化效率不断刷新。目前科学界普遍认为有机太阳能电池已经到了商业化的‘黎明前夕’。”陈永胜说。


2.突破瓶颈:努力提高光电转化效率

制约有机太阳能电池发展的瓶颈在于光电转化效率偏低。提高光电转化效率是有机太阳能电池研究的首要目标,也是其实现产业化的关键。因此,制备出高效率、低成本以及重现性良好的可溶液加工活性材料,则是提高光电转化效率的基础。

陈永胜介绍,早期的有机太阳能电池的研究主要集中在聚合物的给体材料的设计合成,活性层是基于富勒烯衍生物受体的本体异质结构。随着相关研究的不断推进,以及器件工艺对材料的更高要求,具有确定化学结构的可溶液处理寡聚小分子材料开始引起人们的强烈关注。

“这类材料具有结构单一、易提纯、光伏器件结果重现性好等优点。”陈永胜说,早期,大多数小分子溶液处理成膜性不好,因此主要采用蒸镀的方法制备器件,使其应用前景受到很大限制。如何设计合成性能良好并具有确定分子结构的光伏活性层材料,是科学家们公认的关键难题。

凭借对该研究领域敏锐的洞察力和审慎分析,陈永胜果断选择了当时具有重大风险和挑战的新型可溶液加工处理的有机小分子和寡聚物活性材料作为太阳能发电研究的突破点。从分子材料设计,到光伏器件的制备优化,陈永胜带领科研团队夜以继日展开科研攻关,经过10年的不懈努力,终于建构出具有鲜明特色的寡聚小分子有机太阳能材料体系。

从效率5%到超过10%,再到17.3%,他们在不断刷新有机太阳能电池领域光电转化效率的世界纪录。他们提出的设计理念和方法被科学界广泛应用。十几年来,他们在国际著名杂志发表了近300篇学术论文,申请获得50多项发明专利。


3.转化效率一小步,能源界一大步

陈永胜一直在思考:有机太阳能电池到底能达到多高的效率,能否最终媲美硅基太阳能电池?有机太阳能电池产业化应用的“痛点”在哪里,如何去破解?

在过去几年中,虽然有机太阳能电池技术发展迅速,光电转化效率已突破14%,但是与无机和钙钛矿等材料制备的太阳能电池相比,效率仍然偏低。虽然光伏技术应用要考虑效率、成本和寿命等多项指标,但效率始终是第一位的。如何发挥有机材料的优势,通过优化材料设计和改进电池结构及制备工艺,从而获得更高的光电转化效率?

从2015年开始,陈永胜团队开始进行有机叠层太阳能电池方面研究。他认为,要达到甚至超过以无机材料为基础的太阳能电池技术性能的目标,设计叠层太阳能电池是一个极具潜力的方案——有机叠层太阳能电池可以充分利用和发挥有机/高分子材料具有的结构多样性、太阳光吸收和能级可调节等优点,获得具有良好太阳光吸收互补的子电池活性层材料,从而实现更高的光伏效率。

基于上述思路,他们利用团队设计合成的系列寡聚小分子制备获得12.7%的有机叠层太阳能电池,刷新了当时有机太阳能电池领域的效率,研究结果发表在领域顶级期刊《自然*光子学》,该项研究入选“2017年中国光学十大进展”。

有机太阳能电池的光电转化效率究竟有多少提升空间?陈永胜和他的团队系统梳理分析了目前有机太阳能领域材料和器件方面数以千计的文献和实验数据,结合自身的研究积累和实验结果,预测出有机太阳能电池包括多层器件实际可达到的最高光电转化效率,以及对理想活性层材料的参数要求。基于此模型,他们选用在可见和近红外区域具有良好互补吸收能力的前电池和后电池的活性层材料,获得了验证效率为17.3%的光电转化效率,这是目前文献报道的有机/高分子太阳能电池光电转化效率的世界最高纪录,把有机太阳能电池的研究推向了一个新的高度。

“按照我国2016年43.6亿吨标准煤当量的能源需求计算,如果有机太阳能电池光电转化效率提高一个百分点,相应的能源需求由太阳能电池来产生,就意味着每年可减少二氧化碳排放约1.6亿吨。”陈永胜说。

有人说,硅是信息时代最重要的基础性材料,其重要性不言而喻。但在陈永胜看来,硅材料也有其缺点:“且不说硅材料在制备过程中需要付出巨大的能源和环境代价,它的硬、脆特性也难以满足未来人类对于‘可穿戴’器件的柔性要求。因此,以具有良好的可折叠的柔性碳材料为基础的技术产品将是新材料学科可预见的发展方向。”


索比光伏网 https://news.solarbe.com/201901/03/301490.html
责任编辑:zhoutianwei
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
华东师范大学方俊锋最新Nature Communications:一种不含氟化锡、高效且耐用的锡铅钙钛矿太阳能电池来源:钙钛矿太阳能电池 发布时间:2026-01-14 08:37:34

2026年1月12日华东师范大学Wenxiao Zhang&方俊锋&林雪平大学高峰于Nature Communication刊发一种不含氟化锡、高效且耐用的锡铅钙钛矿太阳能电池的研究成果,开发了一种策略,将铅粉作为前驱体,并进行PbF₂后处理,分别替代SnF₂在成膜和表面缺陷钝化中的作用。Pb²⁺中的d电子极化增强了其与F⁻的结合,使其对钙钛矿的反应惰性。在本研究中,不含SnF₂的器件效率从16.43%提高到24.07%。在最大功率点下,85°C 运行 550 小时后,电池仍能保持其初始效率的60%。

从化学到太阳能电池:材料创新在钙钛矿光伏革命中的核心作用来源:钙钛矿材料和器件 发布时间:2026-01-07 10:33:54

钙钛矿太阳能电池已经成为光伏领域的一项变革性技术。自2009年问世以来,因其卓越的效率、低成本的加工工艺和可调谐的光电特性,十年内已成为下一代光伏技术的主要候选者。然而,长期稳定性、铅毒性和工业可扩展性方面的挑战仍然是其大规模商业化的主要障碍。本文探讨了材料创新在克服这些障碍中的核心作用,重点关注成分工程、分子添加剂与钝化、界面化学以及二维/准二维钙钛矿系统的进展。特别关注了电荷传输架构的演变和新兴的商业前景。我们还强调了从追求性能的研究转向注重耐用性和可制造性策略的重要性。文章最后对未来钙钛矿太阳能电池的发展方向提出了建议,包括标准化测试、预测性材料设计和环境友好型制造的需求。

总投资5000万元!烟台华浩新材钙钛矿太阳能电池材料项目环评获批来源:钙钛矿工厂 发布时间:2026-01-06 09:06:58

2026年1月4日,烟台市生态环境局福山分局发布了对“太阳能电池材料及医药中间体研发中心项目”环境影响评价文件审批意见的公示。该项目由烟台华浩新材料科技有限公司投资建设,选址于福山区进和路60号,总投资5000万元,计划建设周期为3个月。根据规划,项目将租赁烟台弘达旅游服务有限公司厂房的三、四层,总建筑面积1500平方米,用于建设研发中心。建成后,将开展钙钛矿太阳能电池材料的研发工作,涉及4个种类共计600余个。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

西安交通大学马伟团队Angew:香豆素基挥发/非挥发性固体添加剂协同作用,助力有机太阳能电池效率突破20.3%!来源:先进光伏 发布时间:2025-12-22 16:27:12

针对这一挑战,湘潭大学、西安交通大学、西安科技大学等多个团队合作设计并合成了两种具有相似骨架的香豆素衍生物固体添加剂:挥发性C5与非挥性C6。结论展望本研究通过精准设计一对结构相似但挥发性迥异的香豆素衍生物添加剂,首次系统比较并揭示了挥发性与非挥发性固体添加剂在有机太阳能电池中的作用机制差异。

四川大学彭强团队NC:溶剂蒸汽扩散驱动多尺度预聚集策略,助力有机太阳能电池突破20.7%效率!来源:先进光伏 发布时间:2025-12-22 16:25:04

论文概览精确调控活性层形貌是提升有机太阳能电池效率的关键,但其复杂性使得实现可重复的最优结构极具挑战。针对此难题,四川大学彭强、徐晓鹏团队创新性地开发了一种溶剂蒸汽扩散策略。实现效率突破:将单结有机太阳能电池效率推升至20.7%以上,跻身世界最高效率行列。结论展望本研究成功开发并验证了一种基于溶剂蒸汽扩散的、用于精确调控非富勒烯受体多尺度预聚集的通用策略。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

固态钙钛矿太阳能电池的发现与进展来源:钙钛矿材料和器件 发布时间:2025-12-22 13:39:11

2012年,我们首次报道了长期稳定的固态钙钛矿太阳能电池,开辟了一个新领域,并引发了认证功率转换效率超过27.3%,超越了单晶硅太阳能电池的效率。如今,随着钙钛矿/硅叠层器件效率接近35%,钙钛矿太阳能电池已成为满足2050年净零碳排放目标所需太瓦级需求的主要候选者。展望未来,钙钛矿太阳能电池已准备好进入市场,预计钙钛矿/硅叠层器件将首先出现,随后是高效单结器件。固态钙钛矿太阳能电池的发现钙钛矿是具有ABX3通式的化合物。

SusMat综述:环保锡基钙钛矿太阳能电池的开压和填充因子损失来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-22 09:36:56

基于锡的卤化物钙钛矿太阳能电池是一种极具前景的无铅替代方案,具有适宜的带隙和强光吸收特性,但其器件性能受制于显著的开路电压和填充因子损失。尽管相关研究已取得一定进展,但由于氧化化学、缺陷物理及界面能学的耦合作用,锡基钙钛矿太阳能电池的开路电压与填充因子性能仍难以媲美铅基钙钛矿太阳能电池。