绿色能源未来的新选择——有机太阳能电池

来源:新华网发布时间:2019-01-03 10:43:26
 从远古自然火的利用,到钻木取火,直至煤炭、石油的利用,人类文明的发展本质上是能源利用能力的发展。迄今为止,人类当代文明和经济发展很大程度上是建立在化石能源开发利用的基础之上。到了21世纪,由于对地球上不可再生的化石能源储量的担忧,以及化石能源在开采与使用过程中衍生的日益严峻的环境污染,使得人们将探索的目光投向绿色可持续的能源领域,比如太阳能、风能、水能……

“唯有解决高效利用太阳能的科学问题,才是人类永续发展之路。”南开大学化学学院陈永胜教授断言,“太阳是万物之母,能源之‘源’。每时每刻抵达地球的太阳光能量若能被利用万分之二,即可满足目前人类社会的全部能源需求。”也正因为如此,陈永胜教授和他的团队将自己的科研使命浓缩为一句话——“向太阳要能源”!


1.有机太阳能电池有望商业化应用

在人类利用太阳能的各项技术中,太阳能电池,即利用“光生伏打效应”将光能直接转换成电能的器件,是当前已获得广泛应用,同时也是最具发展前景的技术之一。

长期以来,人们更多地以晶硅等无机材料为基础制备太阳能电池。但是这种电池生产存在工艺复杂、成本高、能耗大、污染重等弊端。能否找到一种成本低、效率高、柔性强、环境友好的新型有机材料研制出新型太阳能电池,眼下正成为世界各国科学家孜孜以求的目标。

“以地球上最丰富的碳材料为基本原料,通过技术手段获得高效低成本的绿色能源,对于解决目前人类面临的重大能源问题具有极其重大的意义。”陈永胜介绍,从20世纪70年代起步的有机电子学及有机(高分子)功能材料的研究,为这一目标的实现提供了机遇。

与以硅为代表的无机半导体材料相比,有机半导体具有成本低、材料多样性、功能可调、可柔性印刷制备等诸多优点。目前,基于有机发光二极管(OLED)的显示屏已经实现了商业化生产,并在手机和电视显示屏中获得广泛应用。

而基于有机高分子材料作为光敏活性层的有机太阳能电池,具有材料结构多样性、可大面积低成本印刷制备、柔性、半透明甚至全透明等优点,具有无机太阳能电池技术所不具备的许多优良特性。除了作为正常的发电装置外,在其他领域如节能建筑一体化、可穿戴设备等方面亦具有巨大的应用潜力,引起了学术界和工业界的极大兴趣。

“特别是近年来,有机太阳能电池的研究获得了突飞猛进的发展,光电转化效率不断刷新。目前科学界普遍认为有机太阳能电池已经到了商业化的‘黎明前夕’。”陈永胜说。


2.突破瓶颈:努力提高光电转化效率

制约有机太阳能电池发展的瓶颈在于光电转化效率偏低。提高光电转化效率是有机太阳能电池研究的首要目标,也是其实现产业化的关键。因此,制备出高效率、低成本以及重现性良好的可溶液加工活性材料,则是提高光电转化效率的基础。

陈永胜介绍,早期的有机太阳能电池的研究主要集中在聚合物的给体材料的设计合成,活性层是基于富勒烯衍生物受体的本体异质结构。随着相关研究的不断推进,以及器件工艺对材料的更高要求,具有确定化学结构的可溶液处理寡聚小分子材料开始引起人们的强烈关注。

“这类材料具有结构单一、易提纯、光伏器件结果重现性好等优点。”陈永胜说,早期,大多数小分子溶液处理成膜性不好,因此主要采用蒸镀的方法制备器件,使其应用前景受到很大限制。如何设计合成性能良好并具有确定分子结构的光伏活性层材料,是科学家们公认的关键难题。

凭借对该研究领域敏锐的洞察力和审慎分析,陈永胜果断选择了当时具有重大风险和挑战的新型可溶液加工处理的有机小分子和寡聚物活性材料作为太阳能发电研究的突破点。从分子材料设计,到光伏器件的制备优化,陈永胜带领科研团队夜以继日展开科研攻关,经过10年的不懈努力,终于建构出具有鲜明特色的寡聚小分子有机太阳能材料体系。

从效率5%到超过10%,再到17.3%,他们在不断刷新有机太阳能电池领域光电转化效率的世界纪录。他们提出的设计理念和方法被科学界广泛应用。十几年来,他们在国际著名杂志发表了近300篇学术论文,申请获得50多项发明专利。


3.转化效率一小步,能源界一大步

陈永胜一直在思考:有机太阳能电池到底能达到多高的效率,能否最终媲美硅基太阳能电池?有机太阳能电池产业化应用的“痛点”在哪里,如何去破解?

在过去几年中,虽然有机太阳能电池技术发展迅速,光电转化效率已突破14%,但是与无机和钙钛矿等材料制备的太阳能电池相比,效率仍然偏低。虽然光伏技术应用要考虑效率、成本和寿命等多项指标,但效率始终是第一位的。如何发挥有机材料的优势,通过优化材料设计和改进电池结构及制备工艺,从而获得更高的光电转化效率?

从2015年开始,陈永胜团队开始进行有机叠层太阳能电池方面研究。他认为,要达到甚至超过以无机材料为基础的太阳能电池技术性能的目标,设计叠层太阳能电池是一个极具潜力的方案——有机叠层太阳能电池可以充分利用和发挥有机/高分子材料具有的结构多样性、太阳光吸收和能级可调节等优点,获得具有良好太阳光吸收互补的子电池活性层材料,从而实现更高的光伏效率。

基于上述思路,他们利用团队设计合成的系列寡聚小分子制备获得12.7%的有机叠层太阳能电池,刷新了当时有机太阳能电池领域的效率,研究结果发表在领域顶级期刊《自然*光子学》,该项研究入选“2017年中国光学十大进展”。

有机太阳能电池的光电转化效率究竟有多少提升空间?陈永胜和他的团队系统梳理分析了目前有机太阳能领域材料和器件方面数以千计的文献和实验数据,结合自身的研究积累和实验结果,预测出有机太阳能电池包括多层器件实际可达到的最高光电转化效率,以及对理想活性层材料的参数要求。基于此模型,他们选用在可见和近红外区域具有良好互补吸收能力的前电池和后电池的活性层材料,获得了验证效率为17.3%的光电转化效率,这是目前文献报道的有机/高分子太阳能电池光电转化效率的世界最高纪录,把有机太阳能电池的研究推向了一个新的高度。

“按照我国2016年43.6亿吨标准煤当量的能源需求计算,如果有机太阳能电池光电转化效率提高一个百分点,相应的能源需求由太阳能电池来产生,就意味着每年可减少二氧化碳排放约1.6亿吨。”陈永胜说。

有人说,硅是信息时代最重要的基础性材料,其重要性不言而喻。但在陈永胜看来,硅材料也有其缺点:“且不说硅材料在制备过程中需要付出巨大的能源和环境代价,它的硬、脆特性也难以满足未来人类对于‘可穿戴’器件的柔性要求。因此,以具有良好的可折叠的柔性碳材料为基础的技术产品将是新材料学科可预见的发展方向。”

索比光伏网 https://news.solarbe.com/201901/03/301490.html

责任编辑:zhoutianwei
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

李晓东&方俊锋AM:ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层的自组装来源:知光谷 发布时间:2025-12-09 13:43:55

近年来,随着自组装分子的应用,倒置钙钛矿太阳能电池的效率迅速提升,但SAM分子易脱附的问题严重制约了器件稳定性。本研究华东师范大学李晓东和方俊锋等人引入功能化的氧化铟锡纳米颗粒,以促进并增强SAM在基底上的自组装。与ITO基底上传统物理吸附、易脱附的OH不同,INPs上的OH基团键合稳定,能耐受溶剂冲洗和长期老化,从而抑制器件老化过程中SAM的脱附。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

离子液体提高钙钛矿太阳能电池的长期稳定性来源:钙钛矿材料和器件 发布时间:2025-12-05 14:34:30

尽管单结钙钛矿太阳能电池的光电转换效率已突破27%,其商业化进程仍受限于长期运行稳定性的瓶颈。然而,即便在隔绝水与氧等外界应力的条件下,钙钛矿太阳能电池的寿命仍显著短于硅基器件。研究组设计并开发了一系列含乙二醇醚侧链的离子液体,以协同提升钙钛矿太阳能电池的效率与稳定性。该离子液体优先富集于钙钛矿底部,可显著抑制碘化铅的聚集及空隙的形成。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

Joule:钙钛矿太阳能电池的回收利用来源:知光谷 发布时间:2025-12-05 09:52:48

钙钛矿太阳能电池实现了高效率和低成本制造,但面临着铅管理和有限使用寿命的挑战。近日,香港科技大学ZhouYuanyuan、香港浸会大学GuoMeiyu等人回顾了能够有效回收PSC的材料、设备和工艺特性。研究亮点:1)作者总结了技术经济分析和生命周期评估,这些分析和评估表明,通过多轮材料回收,成本和环境影响大幅降低,并比较了器件架构和功能层的回收途径。

郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。

AEM:冷升华‘准固态’添加剂助力有机太阳能电池效率超20%、寿命近500小时来源:知光谷 发布时间:2025-12-03 09:25:55

在Y系列有机太阳能电池中,调控活性层在干燥过程中的形貌对于同时实现高效率与高耐久性至关重要。这些结果确立了物理状态编程的ISR添加剂作为一条通用路径,可协同优化OSCs的效率与稳定性,并为可扩展、无残留的形貌控制提供了机理指导。同时大幅提升效率与稳定性:mDF通过优化结晶动力学、收紧π-π堆积、增大相干长度并编程有利的垂直相分离,将PM6:L8-BO器件效率提升至19.28%,并将高温光照下的运行稳定性大幅延长至477小时。

周二军&于润楠&谭占鳌Nat Commun:通过晶界缓冲调控拉伸应变实现柔性钙钛矿太阳能电池的高效稳定来源:知光谷 发布时间:2025-12-03 09:24:30

本研究嘉兴学院周二军、北京化工大学于润楠和谭占鳌等人通过引入金属螯合物,调控钙钛矿薄膜的纳米力学性能。该策略不仅聚焦于薄膜的纳米力学特性,还揭示了其物理性能与机械柔韧性之间的内在联系。纳米力学-光电性能协同调控:系统阐明了金属螯合物通过静电作用与氢键调控薄膜模量与应变,同步提升载流子寿命与器件稳定性,为柔性光电器件设计提供新思路。