新型钙钛矿太阳能电池:稳定、高效且相对便宜

来源:环球创新智慧发布时间:2018-05-02 11:26:12

近日,日本冲绳科学技术大学院大学(OIST)的研究人员采用一种稳定、高效且相对便宜的钙钛矿材料开发出新型太阳能电池。

背景

太阳能,是颇具代表性的新能源之一。其优势包括:清洁、可再生、无污染、易获取等等。为了将太阳光的能量直接转化为电能,我们通常要借助一种设备:太阳能电池。如今,太阳能电池在我们的身边到处可见,例如:窗户、墙壁、汽车、智能手机、平板电脑等物品中都会见到太阳能电池的身影。

迄今为止,大多数的太阳能电池都是由硅制成,因为这种材料非常善于吸收光线。可是,硅面板的制造成本却很昂贵。

科学家们一直都在研究由钙钛矿组成的结构,使之成为硅的替代品。真正的钙钛矿,是一种存在于地球中的矿物,它由钙、钛、氧分子经过特殊排列而成。具有相同晶体结构的材料称为钙钛矿结构。

相比于共棱、共面形式连接的结构,钙钛矿结构显得更加稳定,更有利于缺陷的扩散迁移。因此,钙钛矿具备了许多优异的物理化学特性,例如电催化性、吸光性等。

钙钛矿结构非常适合作为太阳能电池吸收光线的活性层,因为它们吸收光线的效率比硅更高,且成本更低廉。将钙钛矿结构集成到太阳能电池中,需要采用的设备也相对简单。例如,它们可以溶解到溶剂中,直接喷涂到基底上面。

由钙钛矿结构组成的材料有望为太阳能电池设备带来一场革命,但是却具有一个严重的缺陷:它们通常很不稳定,在高温条件下性能会退化。这严重阻碍了它们的商用。

创新

日本冲绳科学技术大学院大学(OIST)能量材料与表面科学单位的研究人员,由YabingQi教授领导,采用一种稳定、高效且相对便宜的钙钛矿材料开发出太阳能电池,同时也为这种钙钛矿材料未来在太阳能电池中的应用铺平了道路。

他们的研究论文最近发表于《先进能源材料(Advanced Energy Materials)》杂志。博士后学者JiaLiang博士和ZonghaoLiu博士对这项研究作出了主要贡献。

技术

这种材料具有几种关键特征。首先,它是完全无机的(一个重要的变化),因为有机成分通常不耐热,性能会在高温条件下退化。因为太阳能电池会在太阳光照射下变得过热,所以热稳定性显得非常关键。通过无机材料取代有机成分,钙钛矿太阳能电池会变得更加稳定。


如下图所示,这种全无机钙钛矿太阳能电池具有几层。底层是仅有几毫米厚的玻璃,第二层是透明导电材料FTO,接下来是由二氧化钛组成的电子活性层,第四层是光敏钙钛矿,顶层是碳。


下图是钙钛矿太阳能电池的电子显微镜图像,它显示出不同的层。

论文作者之一的ZonghaoLiu博士说:“太阳能电池在暴露于光线中300小时后,几乎未发生改变。”

然而,所有的无机钙钛矿太阳能电池都比有机无机混合物的光线吸收率要低。第二个特征也由此而来:OIST的研究人员将新型电池与锰掺杂,以改善其性能。锰改变了材料的晶体结构,提升了光线吸收能力。Liu表示:“就像你将盐放入一盘菜中来改变它的口味一样,当我们添加锰的时候,它改变了太阳能电池的特性。”

第三,在这些太阳能电池中,在太阳能电池之间传输电流的电极和外部电线都是由碳组成,而不是通常用的金。这些电极特别便宜且易于制造,一部分是由于它们能够直接印刷到太阳能电池中。从另外一方面说,制造金电极则需要高温条件以及真空室等特殊设备。

价值

总结一下,这项研究开发出的钙钛矿太阳能电池具有几项优势:热稳定性好、光线吸收率高、制造工艺简单且成本低。因此,这项研究也为未来钙钛矿太阳能电池的大规模商用奠定了基础。

未来

在变成像硅太阳能电池一样的商用产品之前,钙钛矿太阳能电池仍有一系列的挑战需要克服。例如,钙钛矿太阳能电池可保持运行一到两年,而硅太阳能电池可运行达二十年。

为了改善这些新型电池的效率和持久性,Qi及其同事们正努力工作,同时也在开发制造商用产品的工艺。2009年,首个太阳能电池被报道开发出来。此后,这项技术进展迅猛,这些新型电池的前景看上去很光明。

索比光伏网 https://news.solarbe.com/201805/02/286846.html

责任编辑:suna
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
KHP钝化埋底界面实现高效稳定钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-05 14:43:00

近日,中国科学院上海高等研究院光源科学中心研究人员成功将邻苯二甲酸氢钾作为多功能添加剂引入SnO2电子传输层,以同步改变ETL性质和SnO2/钙钛矿埋底界面。此外,KHP在ETL中均匀分布,并在热退火过程中逐渐扩散至埋底界面和钙钛矿层,进一步与未配位的Pb离子配位,降低钙钛矿的表面及体相缺陷密度,缓解薄膜内部应力。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

离子液体提高钙钛矿太阳能电池的长期稳定性来源:钙钛矿材料和器件 发布时间:2025-12-05 14:34:30

尽管单结钙钛矿太阳能电池的光电转换效率已突破27%,其商业化进程仍受限于长期运行稳定性的瓶颈。然而,即便在隔绝水与氧等外界应力的条件下,钙钛矿太阳能电池的寿命仍显著短于硅基器件。研究组设计并开发了一系列含乙二醇醚侧链的离子液体,以协同提升钙钛矿太阳能电池的效率与稳定性。该离子液体优先富集于钙钛矿底部,可显著抑制碘化铅的聚集及空隙的形成。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

中国石油再创钙钛矿电池效率世界纪录来源:钙钛矿材料和器件 发布时间:2025-12-05 14:27:36

通过持续的技术创新,团队成功攻克了薄膜材料广域带隙精准调控、高质量结晶工艺优化等一系列关键难题,先后3次刷新1.68eV宽带隙与1.50eV常规带隙钙钛矿电池的光电转换效率世界纪录。这一成果不仅标志着中国石油在钙钛矿电池技术领域实现了多路线布局,更使其跻身全球极少数掌握多种钙钛矿太阳能电池核心技术的企业行列。

Joule:钙钛矿太阳能电池的回收利用来源:知光谷 发布时间:2025-12-05 09:52:48

钙钛矿太阳能电池实现了高效率和低成本制造,但面临着铅管理和有限使用寿命的挑战。近日,香港科技大学ZhouYuanyuan、香港浸会大学GuoMeiyu等人回顾了能够有效回收PSC的材料、设备和工艺特性。研究亮点:1)作者总结了技术经济分析和生命周期评估,这些分析和评估表明,通过多轮材料回收,成本和环境影响大幅降低,并比较了器件架构和功能层的回收途径。

欧达光电获评浙江省钙钛矿太阳能电池重点企业研究院来源:钙钛矿工厂 发布时间:2025-12-05 08:59:37

12月3日,浙江省经济和信息化厅就2025年度重点企业研究院、企业研究院拟认定名单进行公示,拟认定浙江省可信数据智能重点企业研究院等211家省重点企业研究院和浙江省亿达时智能灯光企业研究院等1442家省企业研究院。

日本松下在办公窗户上测试玻璃基钙钛矿太阳能电池板来源:pv-magazine 发布时间:2025-12-04 14:55:48

在研究中,松下玻璃型钙钛矿太阳能光伏被用于四个带有防水木质推拉框的YKK内窗,尺寸为723毫米×1080毫米。松下公司开发钙钛矿太阳能技术已超过十年。

大突破!柔性钙钛矿太阳能电池26.22%!南昌大学陈义旺&胡笑添&上交大颜徐州Nature大子刊!来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-04 14:35:17

柔性钙钛矿太阳能电池实现了高效可弯曲能量转换,为下一代可穿戴设备提供了可能。然而,从实验室原型到工业规模组件的转化进程,受限于印刷过程中钙钛矿胶体颗粒的非均匀沉积,导致光电转换效率下降。

AEM:六氟环三磷腈配体实现阳离子均匀分布,器件效率超26%来源:知光谷 发布时间:2025-12-04 10:38:02

CsFAPbI基钙钛矿太阳能电池普遍存在Cs-FA阳离子分布不均的问题,导致结晶缺陷并降低器件性能。关键在于,HFPN能将FA锚定于薄膜底部,实现面外阳离子均匀分布,并消除钙钛矿层内的残余拉伸应力。

郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。