商船三井的混合动力运输船配备太阳能电池和蓄电系统

来源:发布时间:2018-02-02 14:03:06
索比光伏网讯:日本商船三井的混合动力汽车运输船“EMERALD ACE”于2012年6月29日在三菱重工业神户造船所竣工下水。其最大特点是配备了商船三井、三菱重工业和松下共同开发的“混合动力供电系统”。

机械室里的船内电源管理画面


  该系统组合使用了160kW的太阳能电池和2.2MWh的锂离子充电电池,航海中太阳能电池所发电力储存于锂离子充电电池,在停泊时使用太阳能电池和锂离子充电电池中的电力。目标是由此实现停泊时柴油发电机停机,而仅靠太阳能电池和锂离子充电电池的电力来为船内提供电力的“零排放”(图1)。

图1:在停泊时提供电力
“EMERALD ACE”配备采用160kW太阳能电池和2.2MWh锂离子充电电池的蓄电系统,目标是在停泊时提供电力。


评测耐候性

  160kW的太阳能电池设置在最上层甲板的后方。面积约为1000m2。设置角度为5度。采用250kW功率调节器向船内供应交流(AC)450V电力。太阳能电池模块则设置了768块由松下制造的可双面发电的“HIT Double”(输出功率为210W)。

  选择HIT Double的理由并不是发电效率。商船三井表示,“HIT Double的背面采用玻璃而非背板(Back Sheet)覆盖,因此我们认为具有较高的耐候性”。HIT Double并未因配备在船舶上而采用特殊标准。

  2.2MWh的锂离子充电电池非常重,因此配备在船底。由此,可以用于稳定船舶姿势的固定压舱物。锂离子充电电池由松下制造,配备约32万个笔记本电脑用的直径18mm×长65mm的圆筒型单元“18650”。以13串联×24并联的单元为一个模块,最下层的船底设置了52个可容纳20个模块的电池组。模块数量为1040。

放电时采用直流布线

  电池组在充电和放电时采用不同的布线(图2)。放电时,电池组先将250V左右的直流(DC)电力送至DC-DC转换器升压至DC700V。然后,通过逆变器将其转换成AC450V(输出功率为480kW)向船内供电。充电时,直接由AC450V的船内电源向电池组供电,然后通过电池组内的充电器转换成直流进行充电。

图2:船底配备蓄电系统
蓄电系统由电池组、DC-DC转换器和逆变器构成。每个装置间都以直流供电。


  为确保电池的安全性,电池组采取了多重对策。除了单元和模块的监控系统外,为了以防万一,每个模块还加入了阻燃性的隔断。而且,还设置了采用二氧化碳的灭火装置。如果上述措施都无法奏效,还备有令注入的压舱水流入电池组区域,将其没于水中的最终手段。

将废气转换成电力

  此次的汽车运输船因是首次引进蓄电系统,所以在没有减少供电用柴油发电机的情况下,与原船舶一样设置了三台最大输出功率为1170kW的柴油发电机。柴油发电机、电池组和太阳能电池的管理,可在配备柴油发电机的机械室进行。运输船的尺寸为长199m×宽32.26m×高34.52m。由12层构成,可装载6400辆小型汽车。

  商船三井正在推进削减二氧化碳排量的新一代船舶项目。此次这种利用自然能源的混合动力汽车运输船,目标是将来把航行过程中产生的二氧化碳排量削减50%。此外,还计划在预定2013年竣工的铁矿石专用船上,配备将推进发动机的废气热能转换成电力以辅助螺旋桨旋转的技术。(记者:狩集 浩志,《日经电子》)

索比光伏网 https://news.solarbe.com/201802/02/279703.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
AEM:混合学习实现自动化制备钙钛矿太阳能电池的重复性 >24% 效率来源:知光谷 发布时间:2025-11-25 14:33:54

实现高性能且具有良好重复性的钙钛矿太阳能电池仍然是一项重大挑战,因其本质上对制备过程波动和环境变化极为敏感。本研究为提高钙钛矿太阳能电池性能与重复性提供了实用策略,并为可扩展制造与材料加速开发奠定了基础。

浙江大学AFM:基于混合自组装分子的无旋涂制备α-FAPbI3高效倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-11-17 09:42:15

关键原因之一是空穴传输层尚未完全匹配刮涂α-FAPbI3的要求。本工作为高性能、可规模化溶液加工的α-FAPbI3基钙钛矿太阳能电池提供了可行路径。研究亮点:混合自组装分子策略实现全程刮涂制备高质量空穴传输层与α-FAPbI3薄膜,解决了传统SAM在刮涂中易聚集、覆盖不均的问题。器件效率创刮涂倒置α-FAPbI3电池纪录,小面积达25.43%,迷你组件达22.94%,并展现出优异的界面钝化与能级对齐效果。

镁掺杂氧化镍空穴传输层实现高效率和稳定的钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-11-11 14:09:07

钙钛矿太阳能电池是一种有前景的薄膜光伏器件,可实现高达27.3%的功率转换效率。由氧化镍和Me-4PACz组成的空穴传输层在这些器件中被广泛使用。此外,它们还可以用于与其他太阳能电池制备叠层电池。空穴传输层对PSCs极为重要,HTL自身的性能与稳定性具有重要意义。NiOx具有高透光率,其纳米颗粒稳定性优良。同时,使用NiOx的PSC仅保持初始PCE的62.9%。

新型双功能离子方法实现钙钛矿太阳能电池的全面结晶和缺陷控制来源:钙钛矿材料和器件 发布时间:2025-11-06 14:16:39

中国几所大学的研究人员报告说,通过引入三氟甲磺酸钠作为双功能离子调节剂,钙钛矿太阳能电池制造取得了进展。本研究建立了一种综合分子水平策略,用于调节钙钛矿体系中的结晶动力学和缺陷化学。NaOTF介导的离子调控框架为高效、长期稳定的钙钛矿太阳能电池的设计提供了一种通用且可扩展的途径,为下一代光电器件中的受控晶体生长和缺陷钝化提供了宝贵的指导。

分子桥接策略提高了钙钛矿太阳能电池的效率和稳定性来源:钙钛矿材料和器件 发布时间:2025-11-03 14:49:18

中国石油大学(华东)和青岛理工大学的研究人员报告了一种新的分子桥接策略,以解决钙钛矿太阳能电池中已知的挑战—钙钛矿吸收层和载流子提取层之间埋地界面的接触不良。通过引入氨基磺酸钾作为SnOETL和钙钛矿层之间的桥接分子,该团队在器件效率和稳定性方面都取得了提高。这项工作强调了埋地界面工程在提高PSC性能方面的重要性,并证明像HKNOS这样具有成本效益、结构简单的分子可以在效率和耐用性方面带来显着的提升。

电子科大乔梁最新EES:揭示卤化物混合对宽禁带有机-无机卤化物钙钛矿结晶动力学和电荷转移机理的作用来源:先进光伏 发布时间:2025-11-03 10:25:30

推动原位表征方法创新:多模态原位平台为钙钛矿成膜动力学研究设立新标准。结论展望本研究通过多模态原位表征手段,系统揭示了BrI混合卤素宽禁带钙钛矿的结晶动力学与电荷传输机制,明确了垂直取向提升电荷提取与卤素均质化引入缺陷的双重效应。研究指出,未来宽禁带钙钛矿性能提升的关键在于平衡晶体取向与缺陷抑制,可通过功能添加剂、气体淬火等工艺调控结晶路径。

多伦多大学Sargent和帕维亚大学Grancini团队NE:钙钛矿太阳能电池中阳离子与低维钙钛矿表面钝化的机制解析与优化路径来源:先进光伏 发布时间:2025-11-03 10:21:53

论文概览钙钛矿太阳能电池的认证效率已突破26%,其中表面钝化技术是关键推动力。结论展望本综述系统梳理了铵盐基分子与2D钙钛矿钝化层的形成机制、光电特性与器件影响,明确指出区分二者结构对理解性能提升机制至关重要。

EES:卤素混合对宽带隙有机-无机卤化物钙钛矿结晶动力学和电荷转移机制的作用来源:知光谷 发布时间:2025-11-03 09:29:30

尽管基于溴-碘混合卤化物钙钛矿的宽带隙钙钛矿太阳能电池在提升光伏性能方面已有诸多努力,但对于其结晶动力学以及溴混合对结晶动力学的作用仍缺乏深入理解。我们发现,MAPbIBr钙钛矿薄膜存在两种本质上不同的结晶动力学过程:一种是中间溶剂复合相辅助生长(富碘),另一种是自上而下的垂直取向生长(富溴)。

WTe₂ 掺杂的混合钙钛矿提高了钙钛矿太阳能电池的效率和稳定性来源:钙钛矿材料和器件 发布时间:2025-10-28 14:01:17

世宗大学、檀国大学、香港城市大学、沙特国王大学、哈利法科技大学和东国大学首尔分校的研究人员通过设计与二维二硫化钨集成的混合FA-MA钙钛矿基体,开发了一种高效稳定的钙钛矿太阳能电池架构。优化后的WTe集成PSCs实现了令人印象深刻的22.86%的PCE,比原始钙钛矿器件提高了18%。这项研究强调了工程混合钙钛矿-TMDs架构突破下一代光伏性能界限的潜力,为高效耐用PSCs的可扩展室温制造铺平道路。

南京大学林仁兴&谭海仁&军事科学院国防科技创新研究院常超和北理工徐健最新Nature:具有偶极钝化的全钙钛矿叠层太阳能电池来源:钙钛矿太阳能电池 发布时间:2025-10-28 08:58:36

鉴于此,2025年10月27日南京大学林仁兴&谭海仁&军事科学院国防科技创新研究院常超和北理工徐健于Nature刊发具有偶极钝化的全钙钛矿叠层太阳能电池的研究成果,开发了一种偶极钝化策略,该策略可降低混合锡铅处的陷阱密度,同时实现空穴传输层/钙钛矿界面处能级的精确对准。此外,偶极钝化有效地降低了串联器件互连层在窄带隙子电池中引起的接触损耗,使全钙钛矿叠层能电池的效率达到30.6%。

AFM:纳米间隔层支撑的碳纳米管混合电极用于高效稳定碳基钙钛矿太阳能电池来源:知光谷 发布时间:2025-10-27 14:16:32

为实现钙钛矿太阳能电池的商业化,必须降低器件生产成本。然而,采用碳基顶电极的PSCs性能仍逊于金电极,主要归因于界面设计不理想。因此,使用CNT-HTM混合电极的太阳能电池实现了22.6%的光电转换效率。集成光电容系统:以CNT电极为共用电极,构建钙钛矿太阳能电池-超级电容器一体化光电容,整体效率达16.9%,性能媲美GaAs及多结太阳能电池系统,突显碳电极在集成能源器件中的应用潜力。