无论是在离岸的海岛、偏远的边疆无人地区,抑或是在人群密集的都市楼宇、社区、工厂,人们越来越多的看到分布式能源应用的场景。例如,分布式光伏、风力发电搭配柴油发电机组成的微电网,保障遥远小岛上渔民的全部用能需求;又如,天然气冷热电三联供(CCHP)、分布式可再生能源技术被集成到城市社区微电网系统中,为居民和企业提供本地生产的且经济高效的电力、热水以及制冷服务。而这一切很大程度上需要归功于微电网技术,正是因为微电网的兴起,人们选择的用能服务不再局限于市政电网集中供能的模式。这也使得那些建立在市政电网范围之外的遥远海岛、边疆区域,以及对经济性、安全性、环保性有特殊要求的用能单位,可以按照其各自的需求在靠近用户侧的位置来建立分布式的能源供应系统。
“微电网”,是相对传统“大电网”而言的一个概念,是指采用先进的控制技术以及电力电子装置,把分布式能源和它所供能的负荷以及储能等设备连接形成一个微型的完整电网。这种“微型”的电网是从发电、输变电,直到终端用户的完整电力系统,既可以自身形成一个功能齐全的局域性能源网络,以不干扰输配电系统的方式“孤网运行”;也可以通过一个公共连接点与市政电网并网连接:当微电网电源功能不足时可以通过大电网补充缺额,发电量大时可以将多余电量馈送回大电网。必要时,两种模式间可以进行切换,这充分维护了微电网和大电网的安全稳定运行。
作为多种分布式能源的集大成者,“微电网”技术具有广阔的发展空间和应用场景。在一套完整的微电网系统中,分布式能源作为发电侧的供能主体,不同品类的能源之间能够协同互补;在用电侧,系统对用电负荷进行监测和控制;在控制系统层面,微电网需要进行内部调度以及与外部的沟通,实现高度自治;蓄冷、蓄热和电储能使得微电网兼具安全性以及灵活性。按照是否与大电网联接,微电网可以分为离网型和并网型两类。离网型微电网的应用场景包括解决海岛和偏远地区的用电问题,并网型则为用户的供能安全添加了一份保障,联网运行也可以改善系统的经济效益。
分布式能源在离岸海岛微电网的应用
英国苏格兰的埃格岛(Isle of Eigg)是海岛离网型微电网成功应用的典范。因地制宜的微电网充分利用了当地的自然资源,其中发电系统主要由分布式光伏、小型风力发电和水力发电设施组成,总装机容量为184千瓦。多余的可再生电力被储存到电池阵列中,天气条件不佳的情况下,电池组可以为全岛提供一整天的电力。微电网中还包括两台70千瓦的柴油发电机,以备不时之需。整个系统的装机容量虽不算大,但足以满足近百名居民的电力需求,可以称得上是“小而美”的海岛微电网。
微电网中,各种能源在不同季节、不同时段中协同运行,多能互补也成为埃格岛电力系统的最佳配置。得益于较高的纬度,夏季的埃格岛可以享受较长时间的日照,再加上夏季雨水较少,光伏系统的利用率也随之提高。受天气影响,风电和水电在夏季的出力状况不甚理想,居民全天的电力消费都来自光伏和储能电池,只有在游客增多等少数情况下,备用的柴油发电机才开始供电。到了冬季,岛上降雨增多,三台小型水力发电机成为主要的电力来源。埃格岛微电网的控制系统可以监测发电设施的运行,优化电池的充放电循环,并且在电力短缺时自动启动柴油发电机。
微电网极大地提升了埃格岛的电力消费品质。微电网建成之前,居民靠自家的柴油发电机供电,在支付高昂成本的同时,还要忍受设备的噪音和空气污染。岛上的柴油依靠渡轮运输,储备有限的住户会面临断电的风险。如今,微电网保证了埃格岛的不间断供电,每年超过90%的电力消费都来自可再生能源,二氧化碳的排放量也降低了接近一半。另一方面,岛上的微电网展示了出色的经济性。整个项目的设计和建设成本约为166万英镑,而跨海架设电网的成本则高达400多万;目前,埃格岛的电力价格仍高于英国的平均水平,但已经比过去降低了60%。风、光、水、储的有效整合使居民摆脱了化石能源的限制,埃格岛的经验也证明,离网型海岛微电网可以满足现代生活的电力需求。
分布式能源在偏远区域微电网的应用
除了可以改善现有的供电系统外,离网型微电网还是无电地区实现电力普及的重要一环。国际能源署(IEA)的数据显示,截至2014年,全球仍有12亿人缺乏电力供应。在印度,无电人口的数量达到2.4亿,约占印度人口总数的20%,其中绝大部分人生活在偏远的农村地区,这给印度政府的全国电气化计划带来不小的的技术和经济性挑战。比哈尔邦(Bihar)是印度电力缺口最大的邦之一,全邦79%的农村家庭无电可用,其中超过一半的家庭没有接入电网;其他所谓的“通电”家庭则依赖于单一的柴油发电机,这使得该区域对柴油特别依赖,提高了用能成本并造成了空气污染。