NASA研发推进系统:太阳能电子帆为航天器插上“翅膀”

来源:发布时间:2016-12-13 08:46:59

北京时间7月27日消息,据国外媒体报道,NASA的工程师们近日公布了一项激进的推进系统的新细节。该系统或将大大缩短星际旅行的飞行时间。该系统将与太阳释放的粒子发生反应,通过与光子相斥,为飞船提供飞行动力,并让飞船以前所未有的高速运行。

研究人员表示,利用该系统,航天器只需十年时间便能抵达太阳风顶层,而“旅行者”探测器足足用了35年时间才走完了这段路程。他们希望能在2020年之前对该系统展开测试。

“我们能在10年、或12年之内就完成旅行者号此前执行的任务。”NASA马歇尔先进概念办公室的工程师、太阳能电子帆(E-Sail)项目的首席调查员布鲁斯·韦格曼(Bruce Wiegmann)说道。“我们只用五六年时间就能抵达冥王星,只用两年就能抵达木星。”

他们提出的概念名叫“太阳风顶层静电快速传输系统(Heliopause Electrostatic Rapid Transit System,简称Herts)太阳能电子帆项目”。太阳能电子帆不需要内置推进剂,而是由太阳风进行推动,最终到达太阳风顶层,也就是太阳系的边缘。

一艘缓缓旋转的航天器将采用10至20根带电的铝线,打造出一张巨大的“太阳能电子帆”。“我们将把这些又长又细的铝线接在缓慢旋转的航天器外面,并让它们带上正电荷。带正电荷的铝线将与太阳风中带正电荷的离子相斥,从而把飞船向前推去。这就像我们在学校里玩的磁铁一样,磁铁是会同性相斥的。”

每根铝线的直径只有1毫米,但长度足足有12.5英里(约合20公里),差不多相当于219个足球场的长度。太阳能电子帆将与太阳风中的光子相斥,为飞船提供前进的动力。“太阳风中光子和电子的运动速度非常快,可以达到每秒400至750公里。”布鲁斯·韦格曼说道,“太阳能电子帆将利用这些光子推动飞船向前运行。”

NASA马歇尔航天飞行中心的研究人员们已经开始了相关测试,这将会持续两年多时间。他们需要确定有多少光子会与铝线相斥,又有多少电子会与铝线相吸。工程师们还会开展等离子体测试,并改进数据模型,用于太阳能电子帆的进一步研发。不过,专家称该计划存在一定的问题。

“我们正在努力改进这一技术。”韦格曼说道,“我们还在学习相关的物理知识,以便计算太阳风能够提供多大的推力。”


这一构想建立在芬兰气象研究所的佩卡·詹胡南博士(Dr Pekka Janhunen)的发明的基础之上,但研究人员称,还有大量工作尚待完成,也许要再过10年,这一计划才能投入实际使用中。

随着航天器飞行得越来越远,太阳能电子帆的有效区域将不断增加。在距离为1天文单位时,有效区域约为232平方英里(约合600平方公里),而当距离为5天文单位时,有效区域就将超过463平方英里(约合1199平方公里)。

通常来说,当使用太阳帆的航天器到达5天文单位处的小行星带时,太阳光子的能量就会消失,导致航天器无法继续加速。但研究人员认为,太阳能电子帆在过了这一节点之后,仍能继续加速前进。

“我们不需要为太阳风中的光子担心,”韦格曼说道,“光子的供应源源不断,再加上有效面积不断增加,太阳能电子帆将继续加速前进,到达16至20个天文单位处,这至少是太阳帆航天器运行距离的三倍。此外,太阳能电子帆航天器的速度也要快得多。”

NASA的旅行者1号于2012年抵达了太阳能风顶层,此时离它踏上征程已经过去了将近35年时间。而利用这种新方法,航天器抵达太阳能风顶层的时间将缩短为原来的三分之一不到。“我们的研究显示,由太阳能电子帆驱动的星际探测器只需不到10年时间就能抵达太阳能风顶层。”韦格曼指出,“这将使这一类任务的科学收益产生革命性的变化。“

虽然这一技术适合用来把航天器带到太阳能风顶层,但研究人员表示,它也可以用来开展太阳能内部的探索任务。“我们在研究这一构想时,可以清晰地发现,该技术的灵活性和适应性很强。”韦格曼说道。“航天任务和航天器设计师们可以根据自己的不同需求改变铝线的长度、数量和电压水平。太阳能电子帆是非常灵活的。”

索比光伏网 https://news.solarbe.com/201612/13/151349.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

中节能 | 太阳能公司以会代训 推进年度党建重点工作来源:中节能太阳能 发布时间:2025-12-05 09:31:37

为全面提升公司党建工作质量与党务工作者能力素质,深化巩固推进基层党建经营一体化建设成果,落实太阳能公司党委安排部署,近日,太阳能公司聚焦推进当前党建重点任务,围绕落实“第一议题”制度、提高党建制度化规范化水平、加强“阳光文化”建设等举办了2025年度党建业务工作培训,并开展了各大区、子公司落实集团基层党建工作指导员实施办法工作交流。

25.05%!工程材料研究院1.68eV(电子伏特)宽带隙钙钛矿太阳能电池第3次刷新世界纪录!来源:钙钛矿光链 发布时间:2025-12-04 08:51:05

12月1日获悉,工程材料研究院新能源光伏技术团队自主研制的1.68eV(电子伏特)宽带隙钙钛矿太阳能电池,经权威第三方专业测试机构认证,以25.05%的光电转换效率第3次刷新世界纪录,在钙钛矿光伏技术领域持续领跑,为中国石油加快大型清洁电力基地建设和油田分布式清洁能源替代奠定了坚实基础。

明星电站专刊 |中节能太阳能华东区埇桥朱仙庄70兆瓦采煤沉陷区水面光伏发电项目——废弃水域的“净化密码”来源:中节能太阳能 发布时间:2025-12-02 09:33:17

明星电站专刊太阳能华东区:废弃水域的“净化密码”埇桥朱仙庄70兆瓦采煤沉陷区水面光伏发电项目在安徽宿州埇桥区朱仙庄镇的采煤沉陷区,波光粼粼的水面上,深蓝色光伏板如蓝色纽带般铺展,昔日垃圾遍布、杂草丛生的废弃水域,如今已蜕变为年产千万度绿电的“水上能源基地”。中节能埇桥朱仙庄70兆瓦采煤沉陷区水面光伏发电项目,用灿烂的阳光在这片曾因煤炭开采而伤痕累累的土地上,编织“变废为宝”的绿色传奇。

AFM:均质化磷官能团化富勒烯用于增强钙钛矿太阳能电池的电子提取性能来源:知光谷 发布时间:2025-12-01 15:57:35

传统的富勒烯C60虽然是钙钛矿太阳能电池中常用的电子提取材料,但它有两个明显的缺点:一是在溶液里容易抱团,溶解性差;二是和钙钛矿的“互动”太弱,导致界面能量损失。磷官能团的引入,就像给富勒烯装了“抓手”,既提高了它的溶解性,又让它能牢牢地抓住钙钛矿表面。效率与稳定性兼得:该策略不仅将电池效率推高至25.62%,更在长达1000小时的连续光照测试中表现出极强的稳定性,为实现高效稳定的钙钛矿太阳能电池提供了新思路。

南航赵晓明AEM:调控配体吸电子效应设计配体反应性以实现户外稳定的钙钛矿太阳能电池与组件来源:知光谷 发布时间:2025-11-27 13:47:25

2D/3D钙钛矿异质结构提升了钙钛矿太阳能电池的性能。本文南京航空航天大学赵晓明等人研究了芳香铵配体的吸电子强度对钙钛矿界面稳定性的影响。此外,组件在30天户外运行中保持稳定的功率输出,显示出其在实际应用中的潜力。研究亮点:配体吸电子能力调控界面稳定性:通过杂环中氧原子数量的增加,系统调控芳香铵配体的吸电子能力,最强吸电子配体ABDI有效抑制2D相形成并阻止离子互扩散。

中节能太阳能华东区召开全年任务冲刺调度会暨价值创造第五次推进会来源:中节能太阳能 发布时间:2025-11-26 11:29:49

近日,太阳能华东区召开全年任务冲刺调度会暨价值创造第五次推进会。4创新驱动谋变革激活发展动能新活力光伏行业“固定收益”时代落幕,市场环境、政策导向、技术趋势发生深刻变革,华东区全员必须树立“创新求变、改革突破”理念,以创新思维破解瓶颈,以改革举措激发内生动力。2025年,华东区锚定太阳能公司“一保五有”年度目标,以改革创新为重要抓手,持续推动运维工作提质增效。

北京师范大学薄志山NML:非稠环电子受体不对称侧链工程实现18.01%效率!厚膜有机太阳能电池性能突破新纪录!来源:先进光伏 发布时间:2025-11-20 09:32:16

论文概览为提升非稠环电子受体在厚膜有机太阳能电池中的性能,北京师范大学薄志山、李翠红团队与青岛大学刘亚辉、卢浩等合作,创新性地设计并合成了一种具有不对称苯基烷基胺侧链的非稠环电子受体TT-Ph-C6。研究意义提出不对称侧链工程新策略:通过苯基烷基胺侧链实现溶解性与堆积紧密度的平衡。结论展望本研究通过不对称侧链工程成功构建了高性能非稠环电子受体TT-Ph-C6,实现了18.01%的效率与80.10%的填充因子,并在200–300nm厚膜中仍保持领先性能。

中节能 | 太阳能西中区用技改创新为安全生产赋能来源:中节能太阳能 发布时间:2025-11-20 08:42:31

今年以来,太阳能西中区紧密围绕落实集团公司“价值创造年”决策部署和太阳能公司“一保五有”目标任务,以价值创造为帆,以精益管理为桨,大力实施“先锋+五强化”工作,激发全体职工持续创先争优,争做价值创造放大器。西中区各技能提升工作室聚焦通讯改造、修旧利废等关键领域,以“钻”的精神于细微处见真章,以“创”的勇气在平凡中勇探索,用技改创新为安全生产赋能,以一项项“微创新”成效汇成创造价值的能量。

项目就位!工信部第三届能源电子产业创新大赛太阳能光伏赛道创新发力来源: 索比光伏网 发布时间:2025-11-17 08:58:20

截至目前,在主办单位工信部产促中心的指导下,经协办单位碳索光伏、索比光伏网的全力联动,赛道已成功征集已集结一批覆盖光伏全产业链的高质量参赛项目,为行业技术突破与成果转化注入强劲动能。碳索光伏与索比光伏网将持续发挥行业桥梁作用,推动更多光伏创新技术落地生根,为实现“双碳”目标、构建新型电力系统提供坚实支撑,切实落实工信部关于能源电子产业“高端化、智能化、绿色化、融合化”发展的部署要求。

晶澳太阳能研发中心孙阳、尹海鹏、肖波&中科技大学李鑫EES:界面分子取向工程诱导场反转实现高效倒置钙钛矿太阳能电池来源:先进光伏 发布时间:2025-11-11 10:30:40

创新点分析1)提出了分子取向工程诱导界面电场反转的机制。2)实现了低位阻缺陷钝化与高效电荷传输的协同。X射线衍射谱证实钝化处理未引发新相。X射线光电子能谱揭示了PMEAI与钙钛矿中铅和碘的显著电子相互作用,表明其有效的缺陷钝化作用。这归因于PMEAI水平取向形成的致密覆盖层以及其诱导的反向内建电场对银离子迁移的静电排斥作用,共同保障了器件的长期稳定性。