【干货】消除黑硅太阳能电池表面缺陷的研究

来源:摩尔光伏发布时间:2016-04-26 14:39:11

为了增加太阳能电池对入射光的吸收,采用等离子体浸没离子注入的方法使用SF6和O2已经成功生产出多晶黑硅。本实验研究对比了几个不同条件下消除黑硅缺陷的差异。消除黑硅表面缺陷可以减少表面积和刻蚀损伤降低表面复合。利用场发射扫描电子显微镜、分光光度计和量子效应测试仪分别对黑硅的表面结构、反射率和内量子效率进行了研究。研究结果表明,黑硅表面小山峰的数量和高度随着刻蚀时间的增加而降低;黑硅表面反射率随着小山峰的数量和高度的增加而降低。消除缺陷后的电池内量子效率(IQE)和电性能比未消除缺陷的电池有很大提升。效率最高的黑硅电池效率、开路电压、短路电流密度分别是17.46%、623mV、35.99mA/cm2,比传统的酸制绒多晶硅太阳能电池的效率高0.72%。

引言

降低硅片表面反射率增加光吸收是多晶硅太阳能电池提高转化效率的一个重要方向。沉积减反射层(如SiNx[1])是一种可以有效减反射的方法,但表面制绒是一种更稳定和有效的减反射方法。在工业生产和实验研究中,单晶硅利用各向异性腐蚀在碱液中制绒,硅片表面形成金字塔状结构[2]可以有效地降低硅片表面的光反射率。但是多晶硅晶向不规则,各向同性,不能在碱液中制绒,而是在酸溶液中制绒[3]。制绒后的单晶硅反射率在11%左右,但多晶硅酸制绒后反射率在25%左右,反射光损失仍然很大。

为了进一步降低硅片表面的反射率尤其是多晶硅片,人们尝试了很多种制绒方法,在硅片表面制备纳米结构,硅片看上去是黑色的,这就是黑硅[4]。Kontermann等人使用飞秒激光脉冲工艺制备出单晶黑硅太阳能电池[5]。Dimitrov和Du采用化学方法在酸性Na2S2O8和AgNO3混合溶液中制作出随机的纳米级金字塔,转化效率高达17.5%[6]。采用反应离子刻蚀和等离子体浸没离子注入方法[7]也可以制作黑硅。Kumaravelu等人发现离子刻蚀会在纳米结构上产生缺陷且纳米结构会增加硅片的表面积,这些都会降低硅片表面少子寿命[8]。所以需要消除黑硅表面的缺陷来优化电池的电性能。Lee等人采用反应离子刻蚀的方法制作出的黑硅太阳能电池,消除缺陷后电池效率高达16.32%,比传统酸制绒电池[9]效率高0.7%。可见缺陷消除工艺可以大幅度提升黑硅太阳能电池的电性能[10]。

本文中,为了研究缺陷消除工艺对黑硅太阳能电池电性能的影响,我们采用等离子体浸没离子注入方法制作了黑硅太阳能电池并做了几个不同缺陷消除工艺条件的实验对比。

2实验设计

本次试验使用的多晶硅片是156mm*156mm,P型掺杂,厚度为200±20μm。图1为多晶黑硅太阳能电池的生产流程。首先在80℃浓度10%的NaOH溶液中去除硅片表面机械损伤。随后采用等离子浸没离子注入的方法制绒。制绒时通入真空反应仓内的SF6/O2的流量比为3:1,使用的射频频率和功率分别是13.56MHz和900W,无直流偏压,刻蚀时间为4分钟。然后在23℃条件下使用不同的工艺条件(如表1)消除黑硅缺陷。所有的太阳能电池在825℃条件下,使用POCl3扩散。然后利用CF4和O2等离子体刻蚀硅片边缘40分钟。在体积分数10%的HF溶液中去除磷硅玻璃。采用等离子体增强化学气相沉积法(PECVD)沉积厚度为80nm的SiNx。最后丝网印刷、烧结制作成电池。

采用扫描电镜(SEM)研究黑硅的微观形貌,采用带有积分球探测器的紫外可见近红外(UV-VIS-NIR)分光光度计测试黑硅表面的反射率,采用SolarCellScan100量子效应测试系统测试太阳能电池的IQE。

图1.多晶黑硅太阳能电池的生产流程

3实验结果和讨论

图2是六个不同条件的黑硅表面形貌。C2到C6硅片表面纳米小山峰的密度和高度都不一样。C1是酸制绒硅,表面没有纳米级结构。C6是原始的黑硅,没有做缺陷消除处理,表面小山峰的密度和高度都比较大。纳米结构是刻蚀离子、掩膜相互竞争形成的[11]。可以发现C5到C2小山峰的密度和高度不断降低。消除缺陷的化学反应分两步完成。首先,硅片表面被HNO3或者NaNO2氧化,在硅片表面产生氧化层。然后氧化层被HF刻蚀掉,导致小山峰的密度和高度都降低。C2、C3条件黑硅表面的小山峰浓度和高度比C4、C5低。这是因为HNO3比NaNO2的氧化能力强。不管是那种刻蚀溶液,反应时间越长,小山峰的密度和高度越低。

利用带有积分球探测器的紫外可见近红外(UV-VIS-NIR)分光光度计测试黑硅表面在300-1100nm波长范围内的反射率,如图3。平均反射率通过以下公式计算[12]

R(λ)为总反射率,N(λ)为AM1.5标准条件下太阳光通量。可以发现未做缺陷消除工艺的黑硅反射率最低,平均反射率为3.99%。C2到C5反射率依次升高,但均比反射率25.31%的酸制绒硅反射率低。无论是那种刻蚀溶液,随着化学反应时间的延长,小山峰的密度和高度会逐渐降低。C2的平均反射率为20.99%,C3为22.07%,C3的反射率比C2高;C4的反射率为13.39%,C5为15.62%,C5比C4高。这种现象可以归因于以下两方面:首先,黑硅表面的小山峰可以增加光反射时间,硅片吸收光的机会更大;其次,由于小山峰的直径和可见光的波长接近[13],零阶衍射条纹非常弱。可以发现条件C6到C1反射率逐渐升高,这种现象可以归因于:随着小山峰的密度和高度降低,入射光的反射时间会缩短、干涉效应会减弱。

 


 

图2.通过扫描电镜扫描的酸制绒硅和不同缺陷消除条件的黑硅微观结构

 

图3.沉积SiNx前,各个条件硅片的反射率

 

图4.各个条件电池的内量子效率

图4是入射光波长在300-1100nm范围内C1到C6的内量子效率,可以看出缺陷消除后的内量子效率比未处理的高很多。造成这种现象的原因主要有以下两个方面。首先,未消除缺陷的黑硅,表面小山峰的密度和高度较高,增加了表面积。黑硅表面有许多悬挂键、捕获中心等有效的复合中心,表面积越大复合中心也会越多。其次,等离子体刻蚀黑硅表面会在黑硅表面产生缺陷,这些缺陷也是有效的复合中心,采用缺陷消除工艺处理后可以刻蚀掉这些缺陷,提高少子的收集。未消除缺陷的黑硅内量子效率比采用酸制绒硅的还低。这说明没有消除缺陷的黑硅表面复合比酸制绒硅的还高。同时可以发现消除缺陷后的黑硅(C2-C5)内量子效率差异不大。HNO3/HF刻蚀的黑硅反射率高,表面积小所以表面损伤小;NaNO2/HF刻蚀的黑硅反射率低,表面积大所以表面损伤大。两种溶液刻蚀的黑硅反射率和表面损伤这两个因素达到平衡,所以内量子效率差异不大。

表2是各个实验条件的电性能数据。从表中可以看出,条件C4的转化效率是最高的。转化效率、开路电压、短路电流密度依次分别为17.46%、623mV、35.99mA/cm2。这个条件反射率不是最低的。从这个数据中可以发现,想得到更高的转化效率,需要找到表面反射率和表面复合的平衡点。由于表面积大和等离子体刻蚀产生的缺陷,反射率非常低必然会导致非常高的表面复合。例如,条件C6的效率比酸制绒电池的效率还低0.28%。所有缺陷消除后的条件转化效率都比酸制绒电池的高,其他一些人的研究结果也是如此。例如,Shim等人发现,反应离子刻蚀制作出的黑硅电池效率也比酸制绒电池的低。但是这种黑硅经过缺陷消除处理后效率有了很大的提升。条件C4的效率最高,比酸制绒电池的效率高0.72。

表2条件C1-C6的电性能数据。Voc开路电压,Jsc短路电流密度,Pmp最大功率,FF填充因子,Eff光电转效率。 

4总结

采用等离子体浸没离子注入法成功制造出多晶黑硅,并研究了几个不同缺陷消除的工艺条件。小山峰的密度和高度随着处理时间的增加而降低。硅片的表面反射率随着小山峰密度和高度的升高而降低。所有实验条件的硅片都制作成太阳能电池。缺陷消除后的电池内量子效率得到提升,这归因于表面复合的降低。此外,缺陷消除后的电池转化效率比没有缺陷消除的电池以及酸制绒电池的高。条件C2(NANO2/HF/H2O,20分钟)的转化效率最高,转化效率、开路电压、短路电流密度分别是17.46%、623mV、35.99mA/cm2。

赵朋松,李吉,麻增智,王尚鑫,刘晓,王田, 王玉肖 译

晶澳太阳能有限公司


索比光伏网 https://news.solarbe.com/201604/26/97677.html
责任编辑:liufang
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

西安交通大学马伟团队Angew:香豆素基挥发/非挥发性固体添加剂协同作用,助力有机太阳能电池效率突破20.3%!来源:先进光伏 发布时间:2025-12-22 16:27:12

针对这一挑战,湘潭大学、西安交通大学、西安科技大学等多个团队合作设计并合成了两种具有相似骨架的香豆素衍生物固体添加剂:挥发性C5与非挥性C6。结论展望本研究通过精准设计一对结构相似但挥发性迥异的香豆素衍生物添加剂,首次系统比较并揭示了挥发性与非挥发性固体添加剂在有机太阳能电池中的作用机制差异。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

抑制PEDOT:PSS相分离以提升柔性全钙钛矿叠层太阳能电池效率来源:钙钛矿材料和器件 发布时间:2025-12-22 13:45:15

Empa、四川大学、国立清华大学、FluximAG、苏黎世联邦理工学院和斯洛伐克科学院的研究人员证明,超薄PEDOT:PSS中的垂直相分离会产生界面偶极,限制柔性钙钛矿叠层电池性能,而将曲拉通加入PEDOT:PSS可抑制这些偶极子并提升器件效率。柔性全钙钛矿叠层太阳能电池和微型模块。本研究不仅揭示了PEDOT:PSS中界面偶极子作为钙钛矿叠层中的隐藏损耗机制,还提供了一种可扩展的克服方法。

固态钙钛矿太阳能电池的发现与进展来源:钙钛矿材料和器件 发布时间:2025-12-22 13:39:11

2012年,我们首次报道了长期稳定的固态钙钛矿太阳能电池,开辟了一个新领域,并引发了认证功率转换效率超过27.3%,超越了单晶硅太阳能电池的效率。如今,随着钙钛矿/硅叠层器件效率接近35%,钙钛矿太阳能电池已成为满足2050年净零碳排放目标所需太瓦级需求的主要候选者。展望未来,钙钛矿太阳能电池已准备好进入市场,预计钙钛矿/硅叠层器件将首先出现,随后是高效单结器件。固态钙钛矿太阳能电池的发现钙钛矿是具有ABX3通式的化合物。

SusMat综述:环保锡基钙钛矿太阳能电池的开压和填充因子损失来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-22 09:36:56

基于锡的卤化物钙钛矿太阳能电池是一种极具前景的无铅替代方案,具有适宜的带隙和强光吸收特性,但其器件性能受制于显著的开路电压和填充因子损失。尽管相关研究已取得一定进展,但由于氧化化学、缺陷物理及界面能学的耦合作用,锡基钙钛矿太阳能电池的开路电压与填充因子性能仍难以媲美铅基钙钛矿太阳能电池。

肖娟定&蒋晓庆&逄淑平Angew:揭示分子柔韧性在增强吡啶基缺陷钝化以实现高效稳定钙钛矿太阳能电池中的作用来源:知光谷 发布时间:2025-12-22 09:33:25

通过对钙钛矿/C界面进行分子调控以减少缺陷密度,对实现高效稳定的倒置型钙钛矿太阳能电池至关重要。然而,取代基柔韧性对钝化性能的影响仍未得到充分理解。研究发现,柔性中心取代基显著增强了吡啶基团的电子云密度,从而提升了其钝化能力,同时抑制了分子聚集并促进了更好的界面接触。

苏州大学袁建宇AFM:均匀接触的共自组装单层膜实现效率超过26%的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:50:50

咔唑基自组装单层膜作为倒置钙钛矿太阳能电池中的空穴传输层被广泛使用,但它们在溶液中易形成胶束,导致界面均匀性下降。本文苏州大学袁建宇等人设计并成功合成了一系列氟化共轭SAMs,开发出一种用于高性能倒置PSCs的共SAM体系。基于DCA-0F、DCA-1F和DCA-2F共SAMs制备的倒置PSCs分别实现了25.21%、26.11%和25.05%的冠军光电转换效率。共SAM策略实现高效稳定器件:DCA-1F与MeO-2PACz共混形成均匀单层,使倒置PSCs效率提升至26.11%,并在MPP跟踪1000小时后保持约90%初始效率。

ACS Nano:通过分级消除表面碘空位实现高效稳定的FA₀.₉₅Cs₀.₀₅PbI₃单晶钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:48:18

通过在亚稳区进行连续溶质补给的晶体生长,有效清除了微米级深度的碘空位;随后采用有机铵后处理进一步消除最表层残留空位。这种协同策略显著优化了载流子传输并抑制了非辐射复合,从而将单晶钙钛矿太阳能电池的效率从22.8%提升至25.5%。效率与稳定性同步大幅提升:单晶钙钛矿太阳能电池效率从22.8%提升至25.5%,同时T工作寿命从200小时延长至1000小时,是目前报道中效率最高、稳定性最突出的单晶钙钛矿太阳能电池之一。