柔性钙钛矿太阳能电池技术是什么?

来源:Nature Materials发布时间:2016-01-20 09:23:25
       对于理想的光伏器件,其应当具有光电转换效率高、制造成本低、质量轻、寿命长等特点。以有机铅卤化物钙钛矿作为光吸收材料的太阳能电池,虽然具有较高的能量转换效率(约20%),且可以通过低成本、操作简单的溶液法制备获得,但由于其在自然环境下的连续工作稳定性较差,使其距离大规模商业化生产尚有一定距离。

 

此外,随着近年来可穿戴设备和柔性电子器件等概念的流行,轻质量、柔性光电器件也逐渐引起了人们的重视。本文即报道了一种新型的高柔性钙钛矿太阳能电池,其具有高达12%的连续工作能量转换效率和高达23W/g的比功率。同时,本文还通过在电池结构中引入“氧化铬/铬”层的方法,显著提高了电池在自然环境下的稳定性。

电池制备

实验中制备得到的薄膜电池结构示意图与实物图分别如下面两图所示。

 

 

 

 

电池制备的全部过程均在玻璃载片上进行。电池制备前,预先在玻璃载片上旋涂一层聚二甲基硅氧烷(PDMS),作为后续电池制备的支撑物。电池选用高分子材料聚对苯二甲酸乙二醇酯(PET)作为衬底,由于其和PDMS之间仅靠范德瓦尔斯力结合,因此在电池制备结束后,可以将电池和玻璃载片轻松地分开。在PET衬底上,通过旋涂含聚乙撑二氧噻吩(PEDOT)、聚苯乙烯磺酸(PSS)、二甲亚砜(DMSO)和表面活性剂的溶液,再经过低温退火、洗涤和干燥过程,最终得到用于空穴收集与传导的PEDOT:PSS层。

之后,通过一步法进行钙钛矿制备。在PEDOT:PSS层上旋涂含氯化铅(PbCl2)、碘化铅(PbI2)和甲胺碘(CH3NH3I)的二甲基甲酰胺(DMF)溶液,低温退火后即可得到钙钛矿层。样品采用两种不同的材料制备电子传导层——N,N'-二甲基-3,4,9,10-二萘嵌苯四甲酸二酰亚胺(PTCDI)或[6,6]-苯基C61丁酸甲酯(PCBM)。如果采用PTCDI作为电子传导层,其需要在真空腔中通过真空升华法制备得到;如果采用PCBM作为电子传导层,则直接在钙钛矿层上旋涂含PCBM的氯苯、氯仿1:1混合溶剂溶液即可。电子传导层制备结束后,使用蒸镀法,将金属铬缓慢蒸镀至电子传导层表面,得到约10nm厚的氧化铬/铬混合层。

最后,在氧化铬/铬层之上,沉积一层金、铜、铝、或类似的高电导率金属,完成薄膜电池制备过程,形成图1所示的电池结构。在制备好的薄膜电池表面,可以通过喷洒商用聚氨酯(PU)喷涂剂,并静置约24h,形成一层PU包覆层,以防止薄膜电池受到机械损伤。

此外,作为对照组,实验中还制备了以玻璃/氧化铟锡(ITO)为衬底的钙钛矿电池。

高质量钙钛矿层制备

本文中,为了制备得到具有高柔性的钙钛矿电池,选用了柔性有机材料PET作为电池衬底。相比于传统玻璃衬底,PET衬底的粗糙度更高,从原子力显微镜扫描结果中可以明显看到这一点。

 


 


因此,如何在粗糙衬底上得到均一、连续、无针孔的高质量钙钛矿层,就成为了制备高性能钙钛矿电池需要解决的关键问题。文中研究发现,通过在PEDOT:PSS旋涂液中添加DMSO,可以极大地减少在PEDOT:PSS层表面形成的钙钛矿层中的针孔数量,提高钙钛矿层质量。进一步实验发现,通过在PEDOT:PSS旋涂液中添加体积比在5%~10%的DMSO溶液,即可获得大面积无针孔的钙钛矿层。

 

 

“氧化铬/铬”层制备与功能

本文中,在电子传导层和高电导率金属层之间额外蒸镀了一层铬,实验发现,该操作能显著提高电池的稳定性和连续工作性能。

在电池制备过程中,金属铬被缓慢蒸镀至电子传导层表面。虽然该操作在真空下完成(约10-6mbar),但由于真空腔内并非惰性气体环境,因而仍有少量氧分子存在。因此,最终在电子传导层表面形成的并非纯金属铬层,而是“氧化铬(Cr2O3)/铬”混合层。该结果可以通过X射线光电子能谱测量加以确认。

 

 

对于传统的无“氧化铬/铬”层的钙钛矿电池,一旦钙钛矿材料在潮湿空气中分解,由于分解过程会释放出碘化氢(HI),而HI对金、铜等金属均有腐蚀作用,因此,钙钛矿分解后会进一步破坏金属电极,进而降低金属电极对钙钛矿材料的保护作用,加速钙钛矿分解过程。

所以,传统钙钛矿电池在潮湿空气中的稳定性很差。而对于具有“氧化铬-铬”层的钙钛矿电池,由于氧化铬具有很好的化学稳定性,对强酸、弱酸、强碱、弱碱、腐蚀性气体等均有很强的耐受能力,故可以抵抗钙钛矿分解产物对高导电性金属的腐蚀作用。因此,“氧化铬/铬”层可以减缓甚至阻断传统钙钛矿电池的退化过程,极大地提高电池的稳定性。下面的实验结果清晰地展示了这一点。

 

 

 

 

电池性能测试

对制备得到的薄膜电池和对照电池(玻璃/ITO衬底电池)在标准模拟太阳光照射下进行性能测试,测试结果如下图所示,薄膜电池和对照电池具有相似的开路电压(Voc~930mV)和短路电流(Jsc~17.5mA/cm2),但对照电池的填充因子(FF~80%)要略高于薄膜电池(~76%),导致对照电池的能量转换效率(~12.5%)略高于薄膜电池(~12%)。

 


 


但是,由于薄膜电池没有玻璃衬底,使得其总质量很小,因此得到了高达23W/g的比功率(有PU包覆层)。同时,长时间测试表明,含有“氧化铬-铬”层的电池可以在最高功率点连续工作1000s而没有显著性能下降。

 

 

连续工作10h仍保持初始性能的80%以上,连续工作一周后仍不失效。

 

 

电池柔性测试

由于采用了有机材料衬底,因此,制备得到的薄膜电池具有很好的柔性。文章中,采用了如下方法进行测试:先将薄膜电池转移至拉伸状态下的弹性体上,然后释放弹性体,借助弹性体的形态恢复过程,在薄膜电池上形成褶皱,达到测试电池柔性的目的。文章分别测试了薄膜电池的一维压缩性能和二维压缩性能。

 

 

 

 


实验表明,在一维压缩情况下,薄膜电池能承受高达50%的面积压缩率,且在压缩过程中,电池的V-oc和FF值并无明显下降,但是由于电池褶皱导致其受光照的面积下降,导致Jsc(红色圆圈)值随之下降,但是下降速率要慢于电池受光照面积的下降速率。在二维压缩情况下,实验得到了相似的结果。

 

 

 

 

文章中,还对薄膜电池进行了反复压缩实验。实验时,对薄膜电池进行一维压缩,最大面积压缩率为25%,进行多次“无压缩-压缩25%-无压缩”循环,数次循环后采集一次电池性能参数,可以得到如图13所示的实验结果。

实验发现,在经过100次完整循环后,电池仍保持着初始状态70%以上的性能。值得注意的是,在最初的10次循环过程中,电池性能不但没有下降,反而有小幅上升。

 

 

结语

本文通过优化钙钛矿材料制备方法,在有机材料PET衬底上得到了高质量的钙钛矿材料,在使得电池具有很好的柔性的同时,得到了高达12%的能量转换效率,进而获得了高达23W/g的比功率。此外,由于在电池结构中引入了“氧化铬/铬”保护层,减缓了钙钛矿材料的退化过程和金属接触层的腐蚀过程,使得电池可以在无封装的条件下在自然环境中连续工作长达一周以上。

索比光伏网 https://news.solarbe.com/201601/20/95399.html

责任编辑:liuying
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
钙钛矿电池可申报!关于开展第15批 《上海市创新产品推荐目录》编制申报工作的通知来源:钙钛矿工厂 发布时间:2025-12-08 09:45:21

在“双碳”战略引领下,我国光伏技术创新再迎里程碑进展。近日,南京大学谭海仁教授课题组联合仁烁光能产业化团队,在清洁能源关键核心技术研发中取得重大突破。其研制的平米级商业化钙钛矿光伏组件,不仅实现了绿色环保制备,更在转换效率与产品可靠性方面双双达到世界领先水平。

科学家研发自修复封装材料,阻铅超99%!为钙钛矿光伏技术的可靠性提供了关键解决方案来源:钙钛矿材料和器件 发布时间:2025-12-05 14:36:42

钙钛矿太阳能电池凭借其高光电转换效率与低制造成本,正成为下一代光伏技术商业化进程中的领跑者。因此,亟需开发一种能够快速响应损伤、具备高效自修复能力与主动铅捕获功能的新型封装材料,这已成为推动钙钛矿光伏技术实现安全、可持续商业化所必须突破的关键瓶颈。

日本松下在办公窗户上测试玻璃基钙钛矿太阳能电池板来源:pv-magazine 发布时间:2025-12-04 14:55:48

在研究中,松下玻璃型钙钛矿太阳能光伏被用于四个带有防水木质推拉框的YKK内窗,尺寸为723毫米×1080毫米。松下公司开发钙钛矿太阳能技术已超过十年。

大突破!柔性钙钛矿太阳能电池26.22%!南昌大学陈义旺&胡笑添&上交大颜徐州Nature大子刊!来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-04 14:35:17

柔性钙钛矿太阳能电池实现了高效可弯曲能量转换,为下一代可穿戴设备提供了可能。然而,从实验室原型到工业规模组件的转化进程,受限于印刷过程中钙钛矿胶体颗粒的非均匀沉积,导致光电转换效率下降。

突破锡基钙钛矿瓶颈!苏州大学团队费米能级调控界面结构,赋能光伏器件革新来源:光伏领跑者创新论坛 发布时间:2025-12-04 08:44:45

在反式结构中,传统的空穴传输材料PEDOT:PSS与钙钛矿的能级匹配不佳,导致载流子积累和复合。鉴于此,2025年11月30日,苏州大学娄艳辉&王照奎于Angew刊发具有费米能级调控的开创性界面结构用于锡基钙钛矿光伏器件的研究成果,本文设计并合成了一种末端带有甲基硫基的咔唑基膦酸自组装单分子层,并将其引入PEDOT:PSS下方,构建了一种复合空穴传输层结构。

周二军&于润楠&谭占鳌Nat Commun:通过晶界缓冲调控拉伸应变实现柔性钙钛矿太阳能电池的高效稳定来源:知光谷 发布时间:2025-12-03 09:24:30

本研究嘉兴学院周二军、北京化工大学于润楠和谭占鳌等人通过引入金属螯合物,调控钙钛矿薄膜的纳米力学性能。该策略不仅聚焦于薄膜的纳米力学特性,还揭示了其物理性能与机械柔韧性之间的内在联系。纳米力学-光电性能协同调控:系统阐明了金属螯合物通过静电作用与氢键调控薄膜模量与应变,同步提升载流子寿命与器件稳定性,为柔性光电器件设计提供新思路。

高效率且稳定的柔性钙钛矿-晶硅叠层太阳能电池来源:半导体学报 发布时间:2025-12-02 09:50:38

钙钛矿-晶硅叠层太阳能电池兼具高效率与低成本的优势,具有巨大的发展潜力。近期,《自然》杂志同时发表的两项柔性钙钛矿-晶硅叠层太阳能电池的研究,报道了该方向效率及稳定性的重大进展。图1.使用双缓冲层氧化锡的柔性钙钛矿/硅叠层太阳能电池,性能分析及各项参数对比。最终研制出的柔性钙钛矿-晶硅叠层电池效率高达33.6%,开路电压达到2.015V。

隆基在柔性钙钛矿-硅叠层太阳能电池方面效率达33.35%来源:pv-magazine 发布时间:2025-12-01 10:05:18

中国制造商表示,该叠层电池采用双缓冲层策略开发,既提升了界面粘附力,又保持了高效的电荷提取。图片来源:隆基中国光伏组件制造商隆基宣布,其1平方厘米柔性钙钛矿-硅叠层太阳能电池实现了33.35%的功率转换效率。在标准照明条件下测试时,1cm串联电池效率为33.35%,开路电压为1.996V,短路电流密度为19.77mA/cm2,填充因子为84.5%。

拨款336亿!韩国政府重押钙钛矿来源:钙钛矿工厂 发布时间:2025-11-28 16:33:43

近日,韩国经济财政部长具允哲宣布一项336亿韩元的《超级创新经济战略项目第三次推广计划》,计划拨款帮助韩国本土光伏行业商业化钙钛矿/晶硅叠层太阳能电池技术,旨在摆脱中国在传统晶硅光伏领域的主导,通过下一代光伏技术扭转市场局势。此外,韩国政府还于9月成立“光伏研发规划组”,汇聚来自产业、学术界、研究机构和政府的专家,打造叠层电池产业链,重点推动钙钛矿/叠层电池的产业化。

李忠安&李楠AM:f-PSCs 效率25.11%!极性醚链段调控自组装单分子层实现高效且机械稳健的柔性钙钛矿太阳能电池来源:知光谷 发布时间:2025-11-26 11:48:28

柔性钙钛矿太阳能电池是下一代便携式、可穿戴及建筑一体化光伏器件的理想候选者。这一双重功能促使EtOPACz在柔性基底上组装形成致密、均匀的分子层,从而增强界面附着力、改善钙钛矿薄膜质量并促进空穴提取。因此,采用EtOPACzSAM的f-PSCs实现了25.11%的卓越能量转换效率,为目前报道的f-PSCs中最高值之一。这些结果表明,极性醚链段工程为同时优化高性能f-PSCs的界面接触、电荷传输和机械耐久性提供了一条强有力的策略。

Joule:氧化还原介导的Spiro-OMeTAD固态掺杂用于高效稳定钙钛矿光伏器件来源:知光谷 发布时间:2025-11-25 14:37:09

高效n-i-p钙钛矿太阳能电池通常依赖于掺杂的Spiro-OMeTAD作为空穴传输层。本研究中国科学院逄淑平、南京理工大学徐波、厦门大学杨丽和张金宝等人提出了一种氧化还原介导的纳米尺度固态掺杂策略,利用多功能CuInS/ZnS量子点提升空穴传输层的性能和运行稳定性。CISQD中的Cu/Cu氧化还原活性中心促进Spiro-OMeTAD阳离子的形成,从而提升电荷收集效率;同时,ZnS壳层上的未配位硫位点可作为离子陷阱,有效固定Li离子,进一步增强空穴传输层的结构稳定性。