用于太阳能光伏产品中的硅——通往完美之路

来源:pv-tech发布时间:2015-06-18 07:55:03
完美——一个通常会被我们个人的不足或是仅仅因为懒惰而被忽略的远大目标。幸运的是,生活的经历会告诉我们,完美通常只是一种定义,而“足够好”的标准已经可以满足大多数事情的标准。事实上,正是这些不完美使得我们在生活中不断前行。如果幸运一点,我们甚至能够找到钟爱我们身上不完美的人。

尽管存在一定争议,目前全球最完美的物品正在通过阿伏伽德罗项目(Avogadro project)进行合成:在未来,阿伏伽德罗球(Avogadro sphere,见左图一)的目标是成为新的1公斤基准,但今天,它已经成为纯度、晶体学和形态学上的有形标准。该球体是由单一晶体所制成的起劲为止最为精准的球体——当然,它是通过超纯凝固硅制成。选择这一材料背后的原因则是我们对硅料极为熟悉的认知:这一点是其他材料所不具备的,我们知道如何处置硅料、材料在各种环境中的性能表现以及如何将其为我们所用。因此,硅料是我们试图获得完美时的选择。但是,即使是阿伏伽德罗球,也在其中有意地加入了一点不完美(使用了氮),以减少晶体缺陷的发生次数。

但是,材料上面的微小杂质使得这款超纯材料更为完美——这一大胆且看起来与最初目标相悖的举动,背后确是数十年科学研究的成果。光伏产业早期创始人之一、Hans Queisser教授在其精心措辞的报告《Defects in Semiconductors: Some Fatal, Some Vital》(Science, 1998)中重述了这段历史。该报告讲述了“一种具有不可复制的特性的固体”发展成为今天的技术主力硅料的历史。这一成功典范背后的功臣是通过独特的方式对不完美因素进行控制并加以使用,这一过程在今天被称之为缺陷工程。

硅基光伏产品的基础完全建立在Queisser博士所描述关键的、重要的不完美因素的理解之上。在每块太阳能电池中的关键不完美因素——主要是掺杂剂和钝化剂——都是为优化电池性能而对计量进行了精确控制。而对那些重要的不完美因素——主要是导电金属——而言,必须要了解其毒害性,并严格将其控制在临界水平之下。同时还要避免昂贵的、毫无必要的过度提纯。因此,缺陷工程和严格的控制是以最小成本获得最高性能和稳定性的关键。

QQ20150618-16
高纯度太阳能硅料价格优势的消失。

总的来说,追求纯度并没有尽头:用于光伏产品中的硅片需具有精确量控的杂质,以获得理想的电子特性。事实上,如果我们从阿伏伽德罗上切取一片硅片,并将其制成太阳能电池,其结果也不过是一个极为昂贵的样品——以及一群气得跳脚的晶体学家而已。

一二九、九九、六九级别的原料和五九级别的产品

基于上文所提到的经验,通过向原料硅添加特定数量的友好杂质,可将原料硅微调至最佳所产出硅片具有最佳到底安装图。这一步骤就是掺杂,通常通过硼或磷来进行。这一工艺的结果就是将纯度高达99.99999999%(一二九)的原料的纯度降低至99.9999%(六九)。此外,由于原料需要通过熔融固化过程来加入掺杂原子,而坩埚壁或铸锭炉本身上所带有的其他杂质元素也会通过这一过程渗入。因此,单晶或多晶硅片中的杂质浓度通常会将材料的纯度降至五个九的级别。因此,纯度并不一定是一项相关质量标准。

那为什么要去使用昂贵的高纯度原料呢?在2007-2009年之间欧洲出现的安装潮期间,原料制造商和电池制造商所获得的利润暴涨导致了市场的混乱,几乎任何等级的硅金属都能够买上价钱。在这种状况下,不恰当的铸锭控制或不合格的原料会导致硅片中出现数量超标的致命杂质。而这中状况会导致电池性能受限,更有甚者,在长期使用下出现稳定性问题。

太阳能产业也从此种学到了两个深刻的教训。首先,对相关缺陷进行控制是先决条件。其次,使用高纯度原料是一个昂贵且过于单纯的方式。第二条教训的习得在市场上也有所体现:九九级以上原料相对于所谓的二级太阳能硅料(六九至八九)所具有的价格差距已经在过去三年内几乎消失殆尽。

太阳能电池的缺陷:或致命、或同位、或重要

太阳能工程师通常会通过两种方式获得高性能硅片:较为简单的是基于白板记事方式,这就需要使用高纯度原料。因此,重复使用此前铸锭工艺中的切割浆料或是与低等级硅料进行掺杂在这一情景下是被严格禁止的。尽管这种方式在技术上具有可行性,却同时具有原料费用高和产量低等不足。

有经验的太阳能工程师会凭借自己的科研知识和实践经验,并在不损害电池性能和可靠性的前提下选择使用具有价格竞争力的原料,并同时尽可能多的进行循环使用以期达到最佳经济效益。这就意味着需要对致命杂质的浓度限度、次相关的二级杂质,以及关键参杂物的精确用量等有着极为透彻的理解。同时还需对硅锭铸造的凝固工艺有一定的了解, 并将这一步骤作为净化步骤之一,以进一步降低对纯度限制的要求。

太阳能级硅料制造商已然发现了这一商机,并根据气流床反应堆或冶金提纯法等气相沉积技术研制了简化后的净化工艺。对原料中钼、锆、钨和所谓的“死亡金属”致命杂质的严格控制在某些情况下有可能达到“八个九”的等级。而在不影响电池性能和可靠性的前提下,原料对其他过渡金属,如铁、铝或铜,以及各主族元素(如氧、碳、钙等)的接纳程度就要高得多。说道最后,太阳能电池本身才是决定优化原料的最佳实际感应器。

而对供应链所造成的挑战则是如何理解杂质对太阳能电池所造成的影响,以及如何在此种原料基础上提供最好的产品。因此,原料制造商肩负了在其净化工艺中进一步探寻成本降低方式的期盼——摒弃对绝对纯度水平的追求,而使用精确平衡过的杂质浓度作为标准。而六九至八九级别硅料和九九级别以上硅料之间价格差距的逐步缩小也显示出市场对这一发展趋势的认同。
索比光伏网 https://news.solarbe.com/201506/18/74170.html
责任编辑:solarstar
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

浙江大学王勇 AEL: 离子位点竞争策略用于增强钙硅叠层光伏器件中宽带隙钙钛矿的稳定性来源:先进光伏 发布时间:2025-12-23 11:00:37

论文概览宽带隙钙钛矿的稳定性是实现高效钙钛矿/硅叠层光伏器件的关键,但由于宽带隙钙钛矿中卤化物偏析导致的不稳定性仍然是一个重大挑战。结论展望本研究创新性地提出了一种离子位点竞争策略,通过精心设计的多Cl-源前驱体组分优化,实现了Cl离子在钙钛矿晶格与间隙位点的可控分布。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

固态钙钛矿太阳能电池的发现与进展来源:钙钛矿材料和器件 发布时间:2025-12-22 13:39:11

2012年,我们首次报道了长期稳定的固态钙钛矿太阳能电池,开辟了一个新领域,并引发了认证功率转换效率超过27.3%,超越了单晶硅太阳能电池的效率。如今,随着钙钛矿/硅叠层器件效率接近35%,钙钛矿太阳能电池已成为满足2050年净零碳排放目标所需太瓦级需求的主要候选者。展望未来,钙钛矿太阳能电池已准备好进入市场,预计钙钛矿/硅叠层器件将首先出现,随后是高效单结器件。固态钙钛矿太阳能电池的发现钙钛矿是具有ABX3通式的化合物。

SusMat综述:环保锡基钙钛矿太阳能电池的开压和填充因子损失来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-22 09:36:56

基于锡的卤化物钙钛矿太阳能电池是一种极具前景的无铅替代方案,具有适宜的带隙和强光吸收特性,但其器件性能受制于显著的开路电压和填充因子损失。尽管相关研究已取得一定进展,但由于氧化化学、缺陷物理及界面能学的耦合作用,锡基钙钛矿太阳能电池的开路电压与填充因子性能仍难以媲美铅基钙钛矿太阳能电池。

肖娟定&蒋晓庆&逄淑平Angew:揭示分子柔韧性在增强吡啶基缺陷钝化以实现高效稳定钙钛矿太阳能电池中的作用来源:知光谷 发布时间:2025-12-22 09:33:25

通过对钙钛矿/C界面进行分子调控以减少缺陷密度,对实现高效稳定的倒置型钙钛矿太阳能电池至关重要。然而,取代基柔韧性对钝化性能的影响仍未得到充分理解。研究发现,柔性中心取代基显著增强了吡啶基团的电子云密度,从而提升了其钝化能力,同时抑制了分子聚集并促进了更好的界面接触。

苏州大学袁建宇AFM:均匀接触的共自组装单层膜实现效率超过26%的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:50:50

咔唑基自组装单层膜作为倒置钙钛矿太阳能电池中的空穴传输层被广泛使用,但它们在溶液中易形成胶束,导致界面均匀性下降。本文苏州大学袁建宇等人设计并成功合成了一系列氟化共轭SAMs,开发出一种用于高性能倒置PSCs的共SAM体系。基于DCA-0F、DCA-1F和DCA-2F共SAMs制备的倒置PSCs分别实现了25.21%、26.11%和25.05%的冠军光电转换效率。共SAM策略实现高效稳定器件:DCA-1F与MeO-2PACz共混形成均匀单层,使倒置PSCs效率提升至26.11%,并在MPP跟踪1000小时后保持约90%初始效率。

ACS Nano:通过分级消除表面碘空位实现高效稳定的FA₀.₉₅Cs₀.₀₅PbI₃单晶钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:48:18

通过在亚稳区进行连续溶质补给的晶体生长,有效清除了微米级深度的碘空位;随后采用有机铵后处理进一步消除最表层残留空位。这种协同策略显著优化了载流子传输并抑制了非辐射复合,从而将单晶钙钛矿太阳能电池的效率从22.8%提升至25.5%。效率与稳定性同步大幅提升:单晶钙钛矿太阳能电池效率从22.8%提升至25.5%,同时T工作寿命从200小时延长至1000小时,是目前报道中效率最高、稳定性最突出的单晶钙钛矿太阳能电池之一。

Science最新:钙钛矿层在工业纹理硅片上的一致性生长以制备高稳定性叠层太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-19 13:55:59

前言:钙钛矿-硅串联太阳能电池的实验室效率已接近35%。我们采用基于蒸汽的共蒸发方法,在金字塔纹理硅基底上均匀沉积高质量的钙钛矿层,从而制备出效率、稳定性和可重复性都得到增强的钙钛矿–硅串联太阳能电池。利用TFPTMS调控吸附动力学带来的薄膜质量提升,钙钛矿–硅叠层太阳能电池在工业纹理化硅片上实现了超过31%的光电转换效率,并具有增强的可重复性。钙钛矿–硅叠层太阳能电池的EQE谱和反射曲线。