杜邦微电路材料推出全新Solamat® PV76x导电浆料 实现局部背钝化(PERC) 高效太阳能电池

来源:索比太阳能光伏网发布时间:2015-04-10 14:21:08

(2015年4月9日,中国) 杜邦微电路材料(以下简称杜邦)宣布已开发新一代的正面银浆杜邦™ Solamet® PV76x系列,该产品专为局部背钝化电池技术(Passivated Emitter Rear Cell, PERC)设计,可大幅提升太阳能电池和组件的转换效率并改善可靠性。全新的杜邦™ Solamet® PV76x系列已被业界领先的太阳能电池和组件制造商升阳光电(Solartech Energy Corp.)采用,帮助该公司高效组件“蓝宝石”(Sapphire)系列产出最新的高功率产品。

“杜邦™ Solamet® PV76x 系列是专为提升PERC电池转换效率而设计的正面导电银浆,该产品已正式使用于生产线。”杜邦微电路材料太阳能产品全球营销经理林政男表示,“与升阳光电的合作使我们看到令人惊喜的成果。不断提升的杜邦™ Solamet® 导电浆料技术,持续引领行业迈向电池转换效率与组件输出功率的新标杆,随着更多Solamet®导电浆料技术引进市场,我们期待创造更多行业第一。”

杜邦自升阳光电2005年成立以来与该公司紧密合作,通过杜邦™ Solamet®各代产品不断推升电池转换效率。升阳光电最新产品采用杜邦™ Solamet® PV76x正面银导电浆料以及Solamet® PV36x铝浆、PV56x背面银浆—全套完整的浆料系统,成功将多晶背钝化电池转换效率提升至19.6%的水平。这款新的高效蓝宝石系列电池的设计还包括了四条主栅线以及低光致衰减(Light Induces Degradation, LID),在60片多晶组件上可达到286瓦的高输出功率,为业界该类型太阳能组件的最高水平。

升阳光电董事长刘康信表示:“升阳光电与杜邦的合作成功提升了我们高效能产品—蓝宝石系列组件的输出功率,同时也带来更多市场机会,进一步帮助我们的客户达到更高的投资回报。”

杜邦™ Solamet® PV76x正面银浆的推出展现了杜邦在局部背钝化电池技术一连串创新的最新进展。杜邦是第一个推出局部背钝化电池(PERC)专用铝浆Solamet® PV36x以及专用背面银浆Solamet® PV56x的材料供应商。随着Solamet® PV76x正面银浆的推出,杜邦成为业界第一个专为局部背钝化电池技术开发正面导电银浆的公司。杜邦应用于局部背钝化电池的整合性浆料解决方案可帮助电池转换效率显著提升0.15%,并在多晶与单晶局部背钝化电池的生产中得到验证。

杜邦将于4月28-30日在SNEC第九届(2015)国际太阳能产业及光伏工程(上海)展览会中展示最新来自升阳光电的高效组件蓝宝石系列,杜邦展位号为W4-555。
杜邦微电路材料事业部 (DuPont Microcircuit Materials) 在厚膜浆料的开发、制造、销售及支持方面拥有超过 40年的悠久经验,产品应用层面遍及各个电子相关产业,包括显示器、光电、汽车、生物医学、工业、军事和通信等市场。如需了解有关杜邦微电路材料事业部与Solamet® 导电浆料的更多信息,请浏览http://mcm.dupont.com
杜邦是全球领先的光伏材料供应商,旗下先进材料包括杜邦™ Solamet® 光伏导电浆料和杜邦™ 特能®(Tedlar®)PVF薄膜,可用来提高光伏系统输出功率、延长使用寿命、增加投资回报率。更多信息请登陆 http://photovoltaics.dupont.com.cn
创立于1802年的杜邦公司(纽约证交所代码:DD)凭借创新的产品、材料和服务,为全球市场提供世界级的科学和工程能力。杜邦公司相信,通过与客户、政府机构、非政府组织和思想领袖开展协作,我们协助提供应对各种全球性挑战的解决方案,包括为全球各地的人们提供充足健康的食物、减少对化石燃料的依赖,以及保护生命与环境。请登陆杜邦公司网站www.dupont.cn或关注杜邦公司新浪官方微博@杜邦公司,了解更多公司信息以及杜邦对包容性创新的承诺。


升阳光电的局部背钝化电池的生产


蓝宝石系列组件

索比光伏网 https://news.solarbe.com/201504/10/68145.html
责任编辑:edit
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
西交大梁超AM:29.14%! 全钙钛矿叠层电池! 四硫富瓦烯原位双界面调控实现高效Sn-Pb及全钙钛矿电池!来源:钙钛矿人 发布时间:2025-12-26 10:48:30

西安交通大学梁超等人提出一种原位双界面调控策略:在前驱体溶液中引入平面刚性电子给体四硫富瓦烯(TTF)。TTF与锡-铅钙钛矿前驱体组分间的电子给-受相互作用,辅以TTF原位自组装在钙钛矿体相及上下界面的双重富集,协同调控结晶动力学、均化Sn氧化态、促进载流子在体相与双界面处的抽取与输运,并稳固钙钛矿晶格。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

AFM:双功能电子传输层工程实现能级对齐与界面钝化,打造高效钙钛矿发光二极管来源:知光谷 发布时间:2025-12-23 10:00:54

我们深入研究了BPAH对ETL能级和迁移率的影响,并揭示了其与发光层之间的强相互作用,有效钝化了发光层表面缺陷,促进了电荷传输与辐射复合。研究亮点:一分子双功能:BPAH实现ETL能级调控与界面钝化BPAH分子插入POT2T分子间隙,改善π-π堆叠,提升电子迁移率;其咪唑基团与发光层中未配位Pb配位,增强铅-卤键结合力,有效抑制卤离子迁移与界面缺陷。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

肖娟定&蒋晓庆&逄淑平Angew:揭示分子柔韧性在增强吡啶基缺陷钝化以实现高效稳定钙钛矿太阳能电池中的作用来源:知光谷 发布时间:2025-12-22 09:33:25

通过对钙钛矿/C界面进行分子调控以减少缺陷密度,对实现高效稳定的倒置型钙钛矿太阳能电池至关重要。然而,取代基柔韧性对钝化性能的影响仍未得到充分理解。研究发现,柔性中心取代基显著增强了吡啶基团的电子云密度,从而提升了其钝化能力,同时抑制了分子聚集并促进了更好的界面接触。

密西根大学龚曦文最新JACS::多层结构解析与再沉积策略实现高效稳定钙钛矿电池来源:先进光伏 发布时间:2025-12-22 09:02:57

研究发现,传统认知中的“单分子层”实则为多层结构,而钙钛矿制备中常用的DMF溶剂可洗脱超过50%的SAM分子,其中近半数直接来自与ITO基底结合的第一层。Figure4展示了再沉积策略对增强SAM稳定性的多重效益及其界面机制。未来,通过进一步优化SAM分子设计以增强层内与层间相互作用,并结合大面积均匀沉积工艺,有望在更复杂的叠层电池结构中实现界面效率与稳定性的协同提升。

苏州大学袁建宇AFM:均匀接触的共自组装单层膜实现效率超过26%的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:50:50

咔唑基自组装单层膜作为倒置钙钛矿太阳能电池中的空穴传输层被广泛使用,但它们在溶液中易形成胶束,导致界面均匀性下降。本文苏州大学袁建宇等人设计并成功合成了一系列氟化共轭SAMs,开发出一种用于高性能倒置PSCs的共SAM体系。基于DCA-0F、DCA-1F和DCA-2F共SAMs制备的倒置PSCs分别实现了25.21%、26.11%和25.05%的冠军光电转换效率。共SAM策略实现高效稳定器件:DCA-1F与MeO-2PACz共混形成均匀单层,使倒置PSCs效率提升至26.11%,并在MPP跟踪1000小时后保持约90%初始效率。

ACS Nano:通过分级消除表面碘空位实现高效稳定的FA₀.₉₅Cs₀.₀₅PbI₃单晶钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:48:18

通过在亚稳区进行连续溶质补给的晶体生长,有效清除了微米级深度的碘空位;随后采用有机铵后处理进一步消除最表层残留空位。这种协同策略显著优化了载流子传输并抑制了非辐射复合,从而将单晶钙钛矿太阳能电池的效率从22.8%提升至25.5%。效率与稳定性同步大幅提升:单晶钙钛矿太阳能电池效率从22.8%提升至25.5%,同时T工作寿命从200小时延长至1000小时,是目前报道中效率最高、稳定性最突出的单晶钙钛矿太阳能电池之一。

新加坡国立大学侯毅最新Science:在绒面硅上实现最佳钙钛矿蒸汽分配实现高稳定性叠层太阳能电池来源:钙钛矿太阳能电池 发布时间:2025-12-19 08:39:38

2025年12月18日新加坡国立大学侯毅于Science刊发在绒面硅上实现最佳钙钛矿蒸汽分配实现高稳定性叠层太阳能电池的研究成果,在绒面硅衬底上实现平衡的蒸汽分配是形成高质量钙钛矿薄膜并确保器件性能的先决条件。研究表明,有机物种(例如FA+)与金字塔形织构表面的相互作用较弱,导致吸附不足和相杂质的出现

山东大学高珂AM:铂-复合物接受体调节介电常数和激子-振动耦合,适用于高效有机太阳能电池,且能量损失降低来源:先进光伏 发布时间:2025-12-18 11:05:22

针对这一痛点,山东大学高珂团队联合多所高校设计合成了一种铂配合物基非富勒烯受体,通过分子结构调控实现介电常数提升与激子-振动耦合抑制的双重目标。研究意义能量损失调控新策略:通过金属配合物受体同时调控介电常数和激子-振动耦合,为降低OSC电压损失提供了明确的分子设计思路。通过FTPS-EQE与电致发光谱进一步量化了各损失分量,证明PH1D通过提升介电常数和抑制激子-振动耦合,是实现低能量损失的关键。