Manz—全球领先的高科技设备制造商

来源:发布时间:2014-04-22 16:28:59

Manz AG 总公司位于德国罗伊特林根城,是一家全球领先的高科技设备制造商。1987 年成立的Manz 公司,现已从自动化专家,成功发展成为生产设备解决方案的供货商。涵盖的技术领域包含自动化、激光工艺、真空镀膜、电极印刷、测试与检测及化学湿制程,这些核心技术将应用于Manz在“显示器”、“太阳能”及“电池”三大策略领域的技术扩展,并将在未来持续向前发展。

Manz 集团于2006 年在德国公开上市,由创立者Dieter Manz 先生担任首席执行官,Manz 集团在德国、中国大陆、台湾、斯洛伐克、匈牙利及义大利皆设有自己的生产基地;而Manz 集团的业务销售及服务网络遍布全球,包括美国、南韩和印度。至2014年年初,Manz 集团在全球拥有约1,900名员工,其中在亚洲约有900 名。在过去的营业年度中,公司销售额超过2.66亿欧元。

在公司新宣言“激情成就高效能”的推动下,Manz 承诺未来会为各种重点产业的客户,提供更高效能的生产系统解决方案。作为世界领先的设备制造商,Manz为其全球众多客户降低终端产品的生产成本作出了巨大贡献。为了履行这一承诺,Manz不断优化其产品组合,以便在客户端建立可信任的生产制程,同时也稳步提高Manz设备制造的产品性能参数。这个目标成为Manz创新的一个重要动力,帮助实现关键技术的突破,例如可持续发电、全球通信产业所需的显示器和电力驱动交通工具。

2010年夏季,Manz与Würth Solar于德国Schwbisch Hall签订了一项共同合作协议,该协议授权Manz独家获得薄膜太阳能模块的CIGS专有技术。在2012年1月完成收购其CIGS太阳能模组创新生产线后,CIGS技术执照将会无限制地全数转移。正因为这一协议,Manz是全球唯一可供应完整可量产并获利的CIGS太阳能电池组件交钥匙生产线制造商。此外,Manz拥有全球产业最大的CIGS专家团队可供调度支配。

目前,CIGS模块被广泛认为是市场上转换效率最高的产品。

Manz始于德国巴登符腾堡州,这一地区是德国先进工程的摇篮之一,也是当今世界领先的高科技重地之一。Manz员工来自27个国家,并在世界各地的所有重要增长地区表现活跃。随着在中国苏州新工厂的成立(按计划在2012年年初完工启用),Manz能够更加有效地满足当前市场的发展趋势。

作为对企业社会责任的承诺,Manz支持一个名为“创造未来——位于埃塞俄比亚的金工讲习班”的项目。该项计划致力于为埃塞俄比亚的年轻人提供职业培训。


Manz重要里程碑

20多年来,Manz的创办人与执行长Dieter Manz先生不断接受科技发展的启发,近期他则致力于将太阳能产业相关研发,从实验室走向正式投产,并藉此使得太阳能成为重要的替代能源。

2014年,收购了意大利KEMET公司的机械工程部门(前身为Arcotronics公司),扩大了Manz在电池事业群的技术组合。

2013年,Manz亚智科技成为全球触控面板生产设备领导供货商,获得第一张生产AMOLED的设备订单。

2012年,收购德国Würth Solar公司的CIGS太阳能创新生产线,20,000 平方米的苏州新厂生产基地正式启用。

2011年,Manz展示其世界纪录14%模块效率的薄膜太阳能电池模块。

2010年,与Wuerth Solar策略联盟,取得其CIGS生产技术的独家关键技术授权成立真空镀膜技术中心。

2009年,跨足锂电池和燃料电池设备市场。

2008年,收购Manz斯洛伐克厂和台湾亚智科技,获得更多的专业研发人才并扩充产能;在法兰克福证券交易所的主板市场(Prime Standard)挂牌上市。

2007年,2008年1月1日收购德国公司Christian Majer以扩大产能。

2006年,于德国法兰克福证券交易所的新兴企业市场(Entry Standard)公开上市。

2005年,推出太阳能电池模块机械划线设备,投入薄膜太阳能市场。

2000年,首台全自动化晶体硅太阳能电池自动化产线交机;首台晶体硅太阳能电池全自动化质量检测和分类系统完成开发。

1994年,首台液晶显示器产业之自动化解决方案出货至亚洲。

1990年,首台晶体硅太阳能电池自动化系统试测试阶段完成开发。

1987年,成立Manz Automation AG。

索比光伏网 https://news.solarbe.com/201404/22/219403.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
金泽大学实施钛矿太阳能电池的铅稳定技术实地测试来源:钙钛矿材料和器件 发布时间:2025-12-09 16:18:43

东芝能源系统公司主导该项目,长州工业株式会社、电通信大学和金泽大学共同实施。该试验涉及将叠层的钙钛矿太阳能电池与铅稳定技术集成到户外测试模块中。该活动计划于2025年8月8日至2026年12月举行。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

李晓东&方俊锋AM:ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层的自组装来源:知光谷 发布时间:2025-12-09 13:43:55

近年来,随着自组装分子的应用,倒置钙钛矿太阳能电池的效率迅速提升,但SAM分子易脱附的问题严重制约了器件稳定性。本研究华东师范大学李晓东和方俊锋等人引入功能化的氧化铟锡纳米颗粒,以促进并增强SAM在基底上的自组装。与ITO基底上传统物理吸附、易脱附的OH不同,INPs上的OH基团键合稳定,能耐受溶剂冲洗和长期老化,从而抑制器件老化过程中SAM的脱附。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

离子液体提高钙钛矿太阳能电池的长期稳定性来源:钙钛矿材料和器件 发布时间:2025-12-05 14:34:30

尽管单结钙钛矿太阳能电池的光电转换效率已突破27%,其商业化进程仍受限于长期运行稳定性的瓶颈。然而,即便在隔绝水与氧等外界应力的条件下,钙钛矿太阳能电池的寿命仍显著短于硅基器件。研究组设计并开发了一系列含乙二醇醚侧链的离子液体,以协同提升钙钛矿太阳能电池的效率与稳定性。该离子液体优先富集于钙钛矿底部,可显著抑制碘化铅的聚集及空隙的形成。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

Joule:钙钛矿太阳能电池的回收利用来源:知光谷 发布时间:2025-12-05 09:52:48

钙钛矿太阳能电池实现了高效率和低成本制造,但面临着铅管理和有限使用寿命的挑战。近日,香港科技大学ZhouYuanyuan、香港浸会大学GuoMeiyu等人回顾了能够有效回收PSC的材料、设备和工艺特性。研究亮点:1)作者总结了技术经济分析和生命周期评估,这些分析和评估表明,通过多轮材料回收,成本和环境影响大幅降低,并比较了器件架构和功能层的回收途径。

郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。

周二军&于润楠&谭占鳌Nat Commun:通过晶界缓冲调控拉伸应变实现柔性钙钛矿太阳能电池的高效稳定来源:知光谷 发布时间:2025-12-03 09:24:30

本研究嘉兴学院周二军、北京化工大学于润楠和谭占鳌等人通过引入金属螯合物,调控钙钛矿薄膜的纳米力学性能。该策略不仅聚焦于薄膜的纳米力学特性,还揭示了其物理性能与机械柔韧性之间的内在联系。纳米力学-光电性能协同调控:系统阐明了金属螯合物通过静电作用与氢键调控薄膜模量与应变,同步提升载流子寿命与器件稳定性,为柔性光电器件设计提供新思路。