盘点:减反射涂层在太阳能电池技术应用的研究进展

来源:发布时间:2014-02-17 10:11:59

光伏产业的一项技术挑战是如何提高太阳能电池的光电转换效率。然而除了光电转换效率外,如果阳光被电池片反射出去,也就意味着一部分阳光将不能到达太阳能电池表面,也就不利于能量输出。没有经过处理的玻璃表面会反射多达4 %的阳光 - 这部分光是被丢失的,无法转换成电能。

如何减少不必要反射是现代光伏设计的一个重要组成部分。达到此目的的一个有效方法就是使用减反射涂层(ARC)降低反射水平,增加太阳能电池组件的能量输出。

Magnolia Solar首席技术官Roger Welser博士认为:“防反射涂层可以减少平滑的表面造成的眩光、闪烁以及不必要的反射,并能增加太阳能电池和光学传感器等光电器件的光功率输出。”

对减反涂层(ARC)展开的研究很多,ARC技术的代表研究机构及研究趋势有以下一些:

  ARC - 佛罗里达大学

佛罗里达大学的研究人员已经研究了建立在蛾眼结构基础上的防反射技术。

在最近几年,研究机构已经开发了一些革新性的抗反射涂层。其中一个有趣的例子来自佛罗里达大学,基于蛾眼结构的防反射技术。据佛罗里达大学化学工程系副教授姜鹏博士解释:蛾的眼睛有一种规则排列的乳头结构构成的“周期性的亚波长结构”。蛾的眼睛是非常暗的,这不是因为蛾眼中有任何色素,而是因为它们眼睛的角膜结构。

“我们的技术可以在各种基材上模仿这些结构,造成反射抑制,”姜教授说。

该技术的开发是为了克服一些涂在光伏组件硅电池片表面的“传统”四分之一波长氮化硅或二氧化钛涂层结构的缺点。姜教授称,蛾眼构造相比传统的介电涂层表现出“宽带”防反射。

“蛾眼结构,可制作在基材本体上,我们使用自下而上的胶体自组装制作这些结构。这样的工艺发展可以被量产。我们的技术也适用于各种基材,包括单晶硅和多晶硅,砷化镓和玻璃,“姜鹏说。

夏普公司去年宣布,他们已经开发出了基于蛾眼原理的显示器,但姜鹏表示,这些结构技术目前还没有被用于光伏的电池中。目前,使用类似的结构制造的电池已经问世,并且表现出更高的效率 - 姜鹏正积极探讨将该技术进一步商业化的机会。


  ARC - 帝斯曼创新中心

“防反射涂层减少了来自平整表面的不必要的反射,这种反射造成眩光、闪烁…… ”

与此同时,总部位于荷兰的DSM公司创新中心开发了一种纳米多孔涂层技术,在商业上称为 KhepriCoat 。该涂层最初用于相框使用的测试和销售,后来才有了为太阳能应用开发的优化版本。

帝斯曼创新中心品牌及传讯总监Leo Smit解释说,通过在非常薄的涂层shang 创造??纳米多孔空气隙,使得折射指数下降。

“本质上,我们的技术是在固体涂层创造了一系列的纳米孔,并在玻璃上形成封闭的表面和非常良好的粘合 ”斯密特表示。

继最近收购了 Solar Excel后,该公司还开发了一种新型光陷阱技术,让光线可以陷在组件里面,而不是反射到组件外,从而提高效率。

陷光技术仍在研究发展中 - 但KhepriCoat涂料已经是一种商业化的产品,Smit称:“镀膜玻璃‘世界各地的众多太阳能组件生产商正在使用”。”

  ARC - Magnolia Solar 研究中心

在美国,位于马萨诸塞州沃本和纽约州奥尔巴尼的Magnolia Solar,还开发了宽带纳米结构的防反射涂层。它最初源于国防高级研究计划局(DARPA)和纽约州能源研究发展管理局( NYSERDA )的研究 。

Welser解释说,通过设计涂层材料的光学性质,Magnolia Solar先进的纳米结构光学涂层能够在很宽的光谱和角度范围内降低反射。“我们的涂料可以抑制off-angle反射,从而最大限度地减少光伏组件不必要的闪烁和眩光。”

该涂层能够被应用在各种表面,包括硬质的玻璃基板和柔性塑料片,在所有波长和入射角都超越了传统的四分之一波长的减反射涂层。

  其他应用

更广义地说,防反射涂层也用于各种其它应用。例如,它们可以用在各种需要减少光反射的地方。比如灯罩、显示器等,每种应用都有自己的要求,就需要具体的产品开发。

姜鹏也表示,一般情况下,防反射涂层以及那些适用于玻璃表面的涂层可以帮助减少视觉眩光。他还指出,蛾眼构造还可用于发光二极管(LED),以提高光提取。


索比光伏网 https://news.solarbe.com/201402/17/222490.html
责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
华东师范大学方俊锋最新Nature Communications:一种不含氟化锡、高效且耐用的锡铅钙钛矿太阳能电池来源:钙钛矿太阳能电池 发布时间:2026-01-14 08:37:34

2026年1月12日华东师范大学Wenxiao Zhang&方俊锋&林雪平大学高峰于Nature Communication刊发一种不含氟化锡、高效且耐用的锡铅钙钛矿太阳能电池的研究成果,开发了一种策略,将铅粉作为前驱体,并进行PbF₂后处理,分别替代SnF₂在成膜和表面缺陷钝化中的作用。Pb²⁺中的d电子极化增强了其与F⁻的结合,使其对钙钛矿的反应惰性。在本研究中,不含SnF₂的器件效率从16.43%提高到24.07%。在最大功率点下,85°C 运行 550 小时后,电池仍能保持其初始效率的60%。

晶科能源与晶泰科技签署AI高通量叠层太阳能电池项目合作协议来源:晶科能源 发布时间:2026-01-08 10:22:16

全球极具创新力的光伏企业晶科能源近日宣布,与人工智能+机器人赋能研发创新的平台型企业晶泰科技签署战略合作协议,双方将共同成立合资公司,推进基于AI技术的高通量钙钛矿叠层太阳能电池合作研发。此举标志着两家在不同技术领域的领军者强强联合,正式开启在钙钛矿叠层等下一代光伏技术领域的深度协同,旨在通过“AI+机器人”重塑光伏研发范式,加速颠覆性技术的研发与产业化进程。

从化学到太阳能电池:材料创新在钙钛矿光伏革命中的核心作用来源:钙钛矿材料和器件 发布时间:2026-01-07 10:33:54

钙钛矿太阳能电池已经成为光伏领域的一项变革性技术。自2009年问世以来,因其卓越的效率、低成本的加工工艺和可调谐的光电特性,十年内已成为下一代光伏技术的主要候选者。然而,长期稳定性、铅毒性和工业可扩展性方面的挑战仍然是其大规模商业化的主要障碍。本文探讨了材料创新在克服这些障碍中的核心作用,重点关注成分工程、分子添加剂与钝化、界面化学以及二维/准二维钙钛矿系统的进展。特别关注了电荷传输架构的演变和新兴的商业前景。我们还强调了从追求性能的研究转向注重耐用性和可制造性策略的重要性。文章最后对未来钙钛矿太阳能电池的发展方向提出了建议,包括标准化测试、预测性材料设计和环境友好型制造的需求。

新加坡团队攻克钙钛矿-硅叠层太阳能电池量产化关键技术来源:钙钛矿材料和器件 发布时间:2026-01-04 14:06:35

新加坡国立大学的科学家们近期宣布,他们成功在工业级绒面硅片上,通过气相沉积工艺制造出了兼具高效率与长期热稳定性的钙钛矿-硅叠层太阳能电池。值得注意的是,今年6月,新加坡太阳能研究所的研究人员曾报告了钙钛矿-有机叠层太阳能电池取得了26.4%的认证效率世界纪录,并在更大测试器件上达到26.7%,创下了该技术至今的最高性能。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

固态钙钛矿太阳能电池的发现与进展来源:钙钛矿材料和器件 发布时间:2025-12-22 13:39:11

2012年,我们首次报道了长期稳定的固态钙钛矿太阳能电池,开辟了一个新领域,并引发了认证功率转换效率超过27.3%,超越了单晶硅太阳能电池的效率。如今,随着钙钛矿/硅叠层器件效率接近35%,钙钛矿太阳能电池已成为满足2050年净零碳排放目标所需太瓦级需求的主要候选者。展望未来,钙钛矿太阳能电池已准备好进入市场,预计钙钛矿/硅叠层器件将首先出现,随后是高效单结器件。固态钙钛矿太阳能电池的发现钙钛矿是具有ABX3通式的化合物。

SusMat综述:环保锡基钙钛矿太阳能电池的开压和填充因子损失来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-22 09:36:56

基于锡的卤化物钙钛矿太阳能电池是一种极具前景的无铅替代方案,具有适宜的带隙和强光吸收特性,但其器件性能受制于显著的开路电压和填充因子损失。尽管相关研究已取得一定进展,但由于氧化化学、缺陷物理及界面能学的耦合作用,锡基钙钛矿太阳能电池的开路电压与填充因子性能仍难以媲美铅基钙钛矿太阳能电池。

肖娟定&蒋晓庆&逄淑平Angew:揭示分子柔韧性在增强吡啶基缺陷钝化以实现高效稳定钙钛矿太阳能电池中的作用来源:知光谷 发布时间:2025-12-22 09:33:25

通过对钙钛矿/C界面进行分子调控以减少缺陷密度,对实现高效稳定的倒置型钙钛矿太阳能电池至关重要。然而,取代基柔韧性对钝化性能的影响仍未得到充分理解。研究发现,柔性中心取代基显著增强了吡啶基团的电子云密度,从而提升了其钝化能力,同时抑制了分子聚集并促进了更好的界面接触。

新闻排行榜
本周
本月