中节能太阳能使用应用材料二次印刷技术实现 18.32% 的电池转换效率

来源:世纪新能源网发布时间:2014-01-14 23:59:59
索比光伏网讯:· 应用材料公司的精细线二次印刷™技术为中节能公司实现了 0.2% 的电池转换效率提升,满足了中国政府的扩产要求
· 经生产验证的二次印刷升级路径加快中节能太阳能科技(镇江)有限公司提高转换效率的步伐

上海,2014年 1月15日 – 应用材料公司今天宣布,中节能太阳能科技(镇江)有限公司利用基于Baccini’s Esatto™技术的精细线二次印刷™ (FLDP™),于2013年12月初在常规产线上利用常规工艺实现多晶硅太阳能电池平均转换效率达18.32%,产线稳定运转,取得了里程碑式的关键性突破。中节能太阳能科技(镇江)有限公司是中国的一家国有企业,专注于晶硅太阳能电池和组件的研发、生产与安装业务。


中国政府最近颁布了旨在推动中国光伏制造和可再生能源行业发展与进步的《光伏制造行业规范条件》,规定了扩产所需满足的最低电池转换效率要求,中节能太阳能科技(镇江)有限公司的这项成果对于满足这一要求非常关键。

“随着新的太阳能光伏市场在中国各地兴起,竞争加剧,加快创新步伐以实现更高的电池转换效率至关重要,”中节能太阳能科技(镇江)有限公司总经理姜利凯说:“中节能太阳能科技(镇江)有限公司通过升级至应用材料公司基于Esatto技术的精细线二次印刷,成功实现了 18.32% 转换效率的目标,对此我们非常自豪。中节能太阳能科技(镇江)有限公司在现有系统上方便而快速地实现了二次印刷,进一步提高了我们经过优化的普通工艺多晶电池的转换效率。这一成果比我们之前的生产基准实现了 0.2% 的效率提升。基于这项合作带来的巨大价值,中节能太阳能科技(镇江)有限公司期待与应用材料公司进一步合作,采用更多的解决方案来推进太阳能电池技术的发展。”

应用材料公司以Esatto技术为支撑的精细线二次印刷技术通过适用于生产的全套硬件、软件、耗材和工艺解决方案,实现先进、高效电池结构的精确二次印刷。二次印刷技术实现了50微米以下精细线在量产中的应用,从而提升电池转换效率、提高成品率并减少浆料消耗。Esatto 技术包括一套先进的图形识别系统,能实时调节印刷和对准参数,实现在量产中最高的印刷可重复性。

这一水平的先进工艺控制加上浆料优化,提升了电池性能和成品率,同时降低了成本。Esatto技术采用业已证明的最佳已知方法(BKM),能在应用材料引领市场的Baccini丝网印刷金属化系统上快速实现并量产。

“中国工信部强制规定的最低要求进一步证明了组件功率每年增加10瓦的‘效率警钟’,正促使我们的客户快速创新以保持竞争力。”应用材料公司能源与环境解决方案事业部副总裁兼太阳能产品总经理Jim Mullin说:“应用材料公司推出了一整套光伏解决方案,在多代电池设计上提升转换效率、提高成品率并降低成本,我们致力于用这套解决方案帮助中节能太阳能科技(镇江)有限公司这样的重要客户以加快其发展步伐。”

索比光伏网 https://news.solarbe.com/201401/14/193523.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
KHP钝化埋底界面实现高效稳定钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-05 14:43:00

近日,中国科学院上海高等研究院光源科学中心研究人员成功将邻苯二甲酸氢钾作为多功能添加剂引入SnO2电子传输层,以同步改变ETL性质和SnO2/钙钛矿埋底界面。此外,KHP在ETL中均匀分布,并在热退火过程中逐渐扩散至埋底界面和钙钛矿层,进一步与未配位的Pb离子配位,降低钙钛矿的表面及体相缺陷密度,缓解薄膜内部应力。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

离子液体提高钙钛矿太阳能电池的长期稳定性来源:钙钛矿材料和器件 发布时间:2025-12-05 14:34:30

尽管单结钙钛矿太阳能电池的光电转换效率已突破27%,其商业化进程仍受限于长期运行稳定性的瓶颈。然而,即便在隔绝水与氧等外界应力的条件下,钙钛矿太阳能电池的寿命仍显著短于硅基器件。研究组设计并开发了一系列含乙二醇醚侧链的离子液体,以协同提升钙钛矿太阳能电池的效率与稳定性。该离子液体优先富集于钙钛矿底部,可显著抑制碘化铅的聚集及空隙的形成。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

弗劳恩霍夫ISE基于行业标准底TOPCon电池实现与钙钛矿叠层30.6%的效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:17:45

弗劳恩霍夫ISE的研究人员开发了一种采用TOPCon底电池、标准纹理前表面的钙钛矿-硅串联太阳能电池。他们的结果表明,TOPCon底部电池在分流电阻率方面可与串联器件中的异质结电池相当,支持可扩展且具成本效益的工业生产。“证明TOPCon2电池设计及其精益工艺流与钙钛矿/硅叠层集成兼容,标志着实现工业叠层太阳能电池生产的成本效益高峰。”弗劳恩霍夫ISE的其他研究人员最近首次将所谓的掩膜板前金属化方法应用于叠层太阳能电池的开发。

Joule:钙钛矿太阳能电池的回收利用来源:知光谷 发布时间:2025-12-05 09:52:48

钙钛矿太阳能电池实现了高效率和低成本制造,但面临着铅管理和有限使用寿命的挑战。近日,香港科技大学ZhouYuanyuan、香港浸会大学GuoMeiyu等人回顾了能够有效回收PSC的材料、设备和工艺特性。研究亮点:1)作者总结了技术经济分析和生命周期评估,这些分析和评估表明,通过多轮材料回收,成本和环境影响大幅降低,并比较了器件架构和功能层的回收途径。

郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。

周二军&于润楠&谭占鳌Nat Commun:通过晶界缓冲调控拉伸应变实现柔性钙钛矿太阳能电池的高效稳定来源:知光谷 发布时间:2025-12-03 09:24:30

本研究嘉兴学院周二军、北京化工大学于润楠和谭占鳌等人通过引入金属螯合物,调控钙钛矿薄膜的纳米力学性能。该策略不仅聚焦于薄膜的纳米力学特性,还揭示了其物理性能与机械柔韧性之间的内在联系。纳米力学-光电性能协同调控:系统阐明了金属螯合物通过静电作用与氢键调控薄膜模量与应变,同步提升载流子寿命与器件稳定性,为柔性光电器件设计提供新思路。

成都理工大学彭强EES: 介电分子桥使26.60%的高效耐用倒置钙钛矿太阳能电池具有高反向击穿电压来源:先进光伏 发布时间:2025-12-02 14:16:40

实验结果表明,F-CPP处理后的钙钛矿薄膜介电常数提升约2倍,器件瞬态反向击穿电压达-6.6V,为银基钙钛矿太阳能电池中的最高值之一。结论展望本研究通过引入F-CPP介电分子桥,成功实现了钙钛矿太阳能电池效率与反向击穿电压的双重突破,首次系统解决了钙钛矿电池在实际应用中的反向偏压稳定性难题。

高效率且稳定的柔性钙钛矿-晶硅叠层太阳能电池来源:半导体学报 发布时间:2025-12-02 09:50:38

钙钛矿-晶硅叠层太阳能电池兼具高效率与低成本的优势,具有巨大的发展潜力。近期,《自然》杂志同时发表的两项柔性钙钛矿-晶硅叠层太阳能电池的研究,报道了该方向效率及稳定性的重大进展。图1.使用双缓冲层氧化锡的柔性钙钛矿/硅叠层太阳能电池,性能分析及各项参数对比。最终研制出的柔性钙钛矿-晶硅叠层电池效率高达33.6%,开路电压达到2.015V。

明星电站专刊 |中节能太阳能华东区埇桥朱仙庄70兆瓦采煤沉陷区水面光伏发电项目——废弃水域的“净化密码”来源:中节能太阳能 发布时间:2025-12-02 09:33:17

明星电站专刊太阳能华东区:废弃水域的“净化密码”埇桥朱仙庄70兆瓦采煤沉陷区水面光伏发电项目在安徽宿州埇桥区朱仙庄镇的采煤沉陷区,波光粼粼的水面上,深蓝色光伏板如蓝色纽带般铺展,昔日垃圾遍布、杂草丛生的废弃水域,如今已蜕变为年产千万度绿电的“水上能源基地”。中节能埇桥朱仙庄70兆瓦采煤沉陷区水面光伏发电项目,用灿烂的阳光在这片曾因煤炭开采而伤痕累累的土地上,编织“变废为宝”的绿色传奇。