
感谢行业企事业单位的参与和关注,欢迎更多的企业加入!活动官网:http://www.solar588.com 电话:010-57272228
索比光伏网 https://news.solarbe.com/201401/02/47183.html

索比光伏网 https://news.solarbe.com/201401/02/47183.html
本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。
经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!
2025年11月28日,首届全球万物智联数字经济可持续发展大会暨2025(第十届)世界物联网《智慧能源论坛》在北京召开。据悉,论坛现场还举行了世界物联网大会数字能源委员会成员颁证仪式,正式启动《万物智联驱动数字能源革命》2026年度报告编制工作。
近日,太阳能华东区召开全年任务冲刺调度会暨价值创造第五次推进会。4创新驱动谋变革激活发展动能新活力光伏行业“固定收益”时代落幕,市场环境、政策导向、技术趋势发生深刻变革,华东区全员必须树立“创新求变、改革突破”理念,以创新思维破解瓶颈,以改革举措激发内生动力。2025年,华东区锚定太阳能公司“一保五有”年度目标,以改革创新为重要抓手,持续推动运维工作提质增效。
IDPA具有空间受限的多相互作用位点,能够与八面体建立强烈的局部静电相互作用,诱导钙钛矿晶格压缩。总体而言,本工作展示了局部静电相互作用工程作为一种有前景的策略,可从本质上稳定钙钛矿微观结构,弥合静电调控与结构稳定性之间的鸿沟,并突显了其他三电荷有机分子在推动稳定钙钛矿光电器件方面的广阔潜力。
论文概览为提升非稠环电子受体在厚膜有机太阳能电池中的性能,北京师范大学薄志山、李翠红团队与青岛大学刘亚辉、卢浩等合作,创新性地设计并合成了一种具有不对称苯基烷基胺侧链的非稠环电子受体TT-Ph-C6。研究意义提出不对称侧链工程新策略:通过苯基烷基胺侧链实现溶解性与堆积紧密度的平衡。结论展望本研究通过不对称侧链工程成功构建了高性能非稠环电子受体TT-Ph-C6,实现了18.01%的效率与80.10%的填充因子,并在200–300nm厚膜中仍保持领先性能。
10月23日,中国光伏太阳能高效异质结760W+俱乐部第十五次圆桌会议在上海虹桥绿地铂瑞酒店成功举办。最后,共同预祝会议圆满成功。
该研究以"Crystallization-activatedmoisturebarrierforhigh-tolerancemanufacturingofperovskitesolarcells"为题发表于顶级期刊《ScienceAdvances》。结论展望本研究通过精巧的分子设计,成功构建了一种“结晶激活水分屏障”,巧妙地化解了水分在钙钛矿退火过程中的“双刃剑”效应。
高效的宽禁带钙钛矿太阳能电池将叠层效率提高到34.9%,加强了下一代光伏电池的前景。然而,它们的商业应用受到宽带隙钙钛矿稳定性问题的阻碍,特别是在高温最大功率点跟踪条件下。鉴于此,2025年10月22日北京工业大学卢岳&新加坡国立大学侯毅于NatureMaterials刊发稳定定向蒸发宽带隙钙钛矿太阳能电池的中间相演化的研究成果,报道了~1.7eV宽带隙钙钛矿通过中间相演化的稳定性,实现了自导向晶体生长模式。
2025年8月29日,中国光伏太阳能高效异质结760W+俱乐部第十四次圆桌会议在上海国家会展中心洲际酒店成功举办。会议以“鸿图共展,逐光760”为主题,由鸿钧新能源副总裁侯洪涛与王海君共同主持,聚焦高效组件、异质结/钙钛矿叠层技术等产业前沿议题,深入探讨技术突破路径与产业协同机制,为异质结高质量发展凝聚共识。周剑呼吁,俱乐部应成立叠层技术专项工作组,推动数据共享与联合研发,避免“各自为政”延缓产业化进程。
甲脒碘化铅钙钛矿量子点因其优异的光电性能和溶液可加工性,在新一代光伏应用中展现出巨大潜力。最终,FAPbIPQDSCs实现了高达19.14%的功率转换效率,为目前该类型电池的最高效率。创纪录器件效率:CSME处理的FAPbIPQDSCs实现19.14%的效率,是目前该类型电池的最高值,同时器件表现出更低的迟滞效应和更高的稳定性。
8月15日至17日,2025年巴基斯坦国际太阳能展览会于卡拉奇展览中心隆重举办,晶澳科技携DeepBlue4.0Pro系列高效组件重磅亮相B-2-2展位。此次参展巴基斯坦国际太阳能展览会,正是晶澳科技践行这一理念的生动体现。不仅向巴基斯坦市场展示了晶澳科技的技术实力和产品优势,更表达了与当地伙伴携手共进、共同推动巴基斯坦光伏产业繁荣发展的坚定决心。
北京大学和北京大学深圳研究生院的研究人员开展的一项前沿研究,利用人工智能加速发现用于光伏的高性能卤化物钙钛矿材料,开辟了太阳能研发的新领域。该研究直接解决了钙钛矿光伏开发中的一个关键瓶颈:需要更快、更经济高效地识别稳定、无铅和高效的材料。随着叠层器件效率现在接近30%,这种人工智能驱动的发现战略有望加速下一代钙钛矿组件的商业准备。



