薄膜太阳能电池与光伏一体化优势明显

来源:发布时间:2009-02-18 10:53:59

    晶体硅太阳能电池仍占有大部分的市场,但其成本下降的空间有限,而薄膜太阳能电池不仅成本下降的空间较大,转换效率也在迅速提升,在电力供应市场和光伏建筑一体化方面,薄膜太阳能电池都占有举足轻重的地位。

 

    由于薄膜太阳能电池的厚度只有数个微米,比一般纸张还要薄,所以原材料的消耗比晶体硅要少得多。它镀膜时的温度只有200摄氏度~300摄氏度,生产时所消耗的电能回收期较短。薄膜太阳能电池对弱光较为敏感,在同样条件下,高温时的效益也比晶体硅好。它的外观颜色一致性良好,容易和建筑物融为一体,已逐渐被使用在建筑物上,在光伏建筑一体化应用上有无限的商机。

 

    薄膜电池发电成本低

 

    非晶硅/微晶硅薄膜太阳能电池转换效率虽然稍低,但因前景被看好,有很多企业购买应用材料、Oerlikon等公司的生产设备,它属于容易普及化的产品。碲化镉薄膜太阳能电池由于受到专利保护,仅限于FirstSolar等少数几家公司在生产,未见大量投资者设厂生产,属于封闭式。铜铟硒(镓)薄膜太阳能电池效率较高但生产程序较为复杂,尚未大规模生产,投入生产的厂家也还不多。

 

    非晶硅/微晶硅薄膜太阳能电池的制造是从最开始的原材料做到最后的产品,晶体硅太阳能电池的制造则可以分为4个阶段,依次为原材料、硅片、电池片、组件,厂商可以挑其中任何一个阶段或数个阶段制造生产,相对而言,生产非晶硅/微晶硅薄膜太阳能电池的设备就贵了许多,但另一方面,成本下降的空间较大,较具市场竞争力。非晶硅/微晶硅薄膜太阳能电池的制造过程并不复杂,容易生产大面积的电池板,适合大规模量产,目前已有中国的百世德公司和日本的Sharp太阳能公司相继宣布要将产能扩充到GW的范围。百世德公司计划在苏州成立一个大规模国际联合研发中心,从事大面积非晶硅/微晶硅薄膜太阳能电池转换效率和产品可靠性的研发。

 

    尽管到目前为止,晶体硅太阳能电池仍占有大部分的市场,但其成本下降的空间有限,而薄膜太阳能电池不仅成本下降的空间较大,转换效率也可以逼近晶体硅,薄膜太阳能电池目前生产成本大约1.25美元/瓦,估计到2015年,组件的售价可以降到1美元/瓦以下,加上安装费用1美元/瓦,整个系统可以在2美元/瓦安装完成,发电成本大约是8美分/千瓦时,和目前的平均电费约10美分/千瓦时相近,在电力市场中被普遍使用是指日可待的。

 

    光伏一体化应用优势明显

 

    光伏建筑一体化是薄膜太阳能电池的一个重要应用,它是结合太阳能电池发电和建筑物外墙的功能,将太阳能电池组件装置在建筑物上,使它起到既可以发电又可以代替建筑材料的双重用途。在土地价格昂贵的地区,光伏建筑一体化是解决土地成本过高和整合发电运送的最佳方案。建筑业已开始使用薄膜太阳能电池,因为它既能发电,又可降低二氧化碳的排放量,这是未来一个新的趋势。在这方面,薄膜太阳能电池具有无限的潜力。

 

    依安装位置的不同,光伏建筑一体化有很多种类型,如与屋顶结合、与外墙结合、与遮阳装置结合、做玻璃幕墙用等。光伏建筑一体化具有如下优点:1.节省太阳能电池支撑结构,并可替代屋顶、墙面、窗户等建材;2.节省太阳能电池安装成本;3.有效利用建筑物的表面积,不需另外占用土地;4.可以遮阳,降低建筑物外表温度;5.增加建筑物美观;6.将太阳能和建筑物结合,使建筑物能有自己的电源供应。

 

    随着技术的进步,薄膜太阳能电池产品的转换效率将可达到10%以上,加上原来就具有低成本、可大规模量产的优点,组件的售价可以降到1美元/瓦以下,发电成本也就可以降到8美分/千瓦时以下,和现有传统电力相比是具有竞争力的。光伏建筑一体化将建筑和薄膜太阳能电池结合在一起,部分建筑材料由薄膜太阳能电池取代,使得建筑物能有自己的电源供应,减少二氧化碳的排放,具有重要的环保意义。因此,在电力供应市场和光伏建筑一体化方面,薄膜太阳能电池将都占有举足轻重的地位。
   
    (编辑:xiaoyao)


索比光伏网 https://news.solarbe.com/200902/18/277290.html
责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
量产电池效率全球第一!高效柔性薄膜砷化镓电池企业完成融资来源:东吴光伏圈 发布时间:2025-12-31 09:11:01

近日,中肃资本完成对江苏宜兴德融科技有限公司的B轮投资。据悉,德融科技的核心产品高效率柔性薄膜砷化镓太阳能电池,始终高居国内光伏电池效率榜榜首,可广泛应用于航空航天、物联网等领域。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

固态钙钛矿太阳能电池的发现与进展来源:钙钛矿材料和器件 发布时间:2025-12-22 13:39:11

2012年,我们首次报道了长期稳定的固态钙钛矿太阳能电池,开辟了一个新领域,并引发了认证功率转换效率超过27.3%,超越了单晶硅太阳能电池的效率。如今,随着钙钛矿/硅叠层器件效率接近35%,钙钛矿太阳能电池已成为满足2050年净零碳排放目标所需太瓦级需求的主要候选者。展望未来,钙钛矿太阳能电池已准备好进入市场,预计钙钛矿/硅叠层器件将首先出现,随后是高效单结器件。固态钙钛矿太阳能电池的发现钙钛矿是具有ABX3通式的化合物。

Nat Commun:有机太阳能电池突破20%效率!稠环异构化调控非卤化有机太阳能电池的分子堆积与器件性能来源:知光谷 发布时间:2025-12-17 11:19:27

分子骨架几何结构的微小变化影响有机太阳能电池中的分子间相互作用与性能。本文香港理工大学罗正辉等人研究了三种异构小分子受体,以揭示不同稠环构型如何调控分子堆积、电子耦合和薄膜形成。原位光学测量显示,NaO1在成膜过程中促进快速且连续的结构演化,形成平滑的形貌和均匀的相分布。我们的研究结果凸显了稠环异构化如何决定有机太阳能电池中结构-堆积-性能之间的关系。

AEL:氧化铈掺入提升钙钛矿太阳能电池的辐射耐受性与稳定性来源:知光谷 发布时间:2025-12-16 09:38:07

卤化物钙钛矿太阳能电池因其高效率与缺陷耐受性结构而具有成为下一代光伏技术的巨大潜力。光谱与电学分析表明,该处理抑制了非辐射复合,保持了晶界电势,并提升了光热稳定性。这些结果表明,CeO的掺入为增强钙钛矿太阳能电池在同时面临环境与辐射暴露时的耐久性提供了一种有效策略,为其在陆地与航空航天能源技术中的可靠应用铺平了道路。

Advanced Energy Materials:底部锚定实现阳离子均匀分布与无应变结晶,打造高效稳定倒置钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-15 22:01:48

江西理工大学团队Advanced Energy Materials:底部锚定实现阳离子均匀分布与无应变结晶,打造高效稳定倒置钙钛矿太阳能电池

AFM:通过掺杂与缺陷工程实现GaOₓ的双极性载流子传输,用于高效硅异质结太阳能电池来源:知光谷 发布时间:2025-12-15 18:24:32

钝化接触是实现高效晶体硅(c‑Si)太阳能电池全部潜力的关键赋能技术。过渡金属氧化物(TMOs)因其宽带隙、可调的功函数(WF)和有效的表面钝化能力,作为钝化接触层受到广泛关注。氧化镓(GaOₓ)具有超宽带隙(≈4.8 eV)、高电子迁移率以及因其丰富的固定电荷而具有优异的场效应钝化能力,但其在钝化接触中的应用尚未被探索。

AEM:水溶性V₂O₅₋ₓ实现高效倒置钙钛矿太阳能电池,兼具高工作与反向偏压稳定性来源:知光谷 发布时间:2025-12-15 18:18:57

钙钛矿太阳能电池(PSCs)在长期稳定性方面面临挑战,尤其是在反向偏压下。

AFM:高效宽带隙与叠层钙钛矿太阳能电池的异质界面接触优化来源:知光谷 发布时间:2025-12-12 19:10:55

钙钛矿基叠层太阳能电池是下一代光伏技术的关键。作为核心组成部分,载流子传输层(CTL)在单结与叠层钙钛矿电池中均面临界面接触不良和载流子传输效率低等问题。

青岛大学张安东、路皓、欧阳丹和北京师范大学薄志山等人JACS :通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:先进光伏 发布时间:2025-12-10 09:49:47

光学带隙测试结果表明,Rh-Py的带隙为2.63eV,其他CILs则分别为2.91eV、2.84eV和3.06eV。进一步实验表明,Rh-Py由于其强分子内偶极矩,能够显著调节银电极的功函数,而其他CILs如TZD-Py、Rh-Th和Rh-Ph则显示出较小的调节作用。这项研究将Rh-Py作为反溶剂添加剂应用于钙钛矿太阳能电池,以实现界面缺陷钝化和能级调节。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。