论文概览近年来,倒置钙钛矿太阳能电池在自组装分子使用方面效率迅速提高。技术亮点锚定强化:引入富羟基ITO纳米颗粒作为中间层,通过稳固的化学键合有效“锁住”自组装分子空穴传输层,从根本上抑制其在溶剂处理与长期运行中的脱附问题。通过计算P/Sn元素比,进一步评估了PSCs老化过程中SAM的脱附情况。如图4a所示,ITO/INPs/SAM基底上的钙钛矿显示出比ITO/SAM基底上的更强的PL猝灭,表明孔导电性更高,这归因于在钙钛矿涂覆过程中抑制了SAM的脱附。
近年来,随着自组装分子的应用,倒置钙钛矿太阳能电池的效率迅速提升,但SAM分子易脱附的问题严重制约了器件稳定性。本研究华东师范大学李晓东和方俊锋等人引入功能化的氧化铟锡纳米颗粒,以促进并增强SAM在基底上的自组装。与ITO基底上传统物理吸附、易脱附的OH不同,INPs上的OH基团键合稳定,能耐受溶剂冲洗和长期老化,从而抑制器件老化过程中SAM的脱附。
IPN是一种聚合物,由两条或多条不同的聚合物链组成,这些聚合物链至少部分交织在一起,但彼此之间没有共价键合。不同种类聚合物之间的纠缠形成了IPN的均匀物理互锁,并且比单个聚合物组件在较宽的温度范围内具有更高的抗周围溶剂溶胀性和更好的机械强度。在最近的工作中,科学家们提出了一种简单的低温包埋策略,用于将三维IPN-氧化物纳米颗粒复合到PSCs上。随后,CeO2纳米颗粒被掺入IPN聚合物中,用于PSCs设备的封装。
载流子提取需要先进的界面工程,以最大限度地减少界面缺陷并优化电荷传输。图片来自:Journal of Power Sources韩国全北大学、首尔大学和忠南道大学的研究人员通过结合纳米颗粒 SnO2
背接触钙钛矿太阳能电池 (BC-PSC)
通过消除前接触电极,从而最大限度地提高光子吸收并改善电荷收集,为传统钙钛矿结构提供了一种有吸引力的替代方案。然而,在 BC-PSC
中实现高效的
/mL PC₆₁BM(溶于 CB),旋涂转速 3000 rpm,时间 30 秒。ZnO 纳米颗粒层:ZnO 纳米颗粒(溶于异丙醇),旋涂转速 4000 rpm,时间 60 秒。Ag 电极制备方法:热
处理后重新取向的示意图。图 3. a) 器件结构示意图:对照组薄膜、含 Al₂O₃纳米颗粒的空穴传输层(ST-Al₂O₃),以及结合 Al₂O₃纳米颗粒和 PEABr 的空穴传输层(ST-Al₂O
20分钟。UV-O₃处理30分钟后,以4000 rpm旋涂15 mg/mL NiOx纳米颗粒水溶液30秒,150℃空气退火20分钟。随后转移至氮气手套箱,在NiOx层上以3000 rpm旋涂
太阳能电池性能的重要策略。这些优势使得二维/三维异质结结构被广泛采用,以同时提高钙钛矿电池的效率和稳定性。目前大多数二维/三维异质结中的二维钙钛矿采用铵基间隔阳离子,如Ruddlesden-Popper相中
、去离子水和乙醇中超声清洗 15 分钟,随后烘干。衬底在旋涂 NiOx 纳米颗粒(30 mg NiOx 纳米颗粒分散于 1 ml 去离子水)前经紫外处理 15 分钟,并转移至氮气手套箱。将
中的埋界面。通过引入各种甲脒基材料(FAI、FABr 和
FACl),F-ISS方法有效地减少了界面缺陷,减轻了纳米颗粒的聚集,增强了电子传输层(ETL)的电学和形貌均匀性,并改善了能级排列。引入
埋界面缺陷和界面能失配是钙钛矿太阳能电池的关键挑战,它们会导致严重的载流子非辐射复合并引入衰减中心,从而限制器件性能。尤其是埋界面处的空隙形成、粘附性差和界面缺陷等问题,会严重影响钙钛矿太阳能电池的
新能源产业园项一期拉棒1车间已具备生产设备进场条件;博海20GW高效太阳能电池片生产项目已开工,项目投资110亿元。欧美“降温”中东、拉美、非洲成“热土”下半年,当光伏产业链国内正处于艰难“反内卷”浪潮
之中时,而海外,则悄然频传建厂好消息。12月19日,晶澳科技发布公告,宣布拟投资建设阿曼年产6GW高效太阳能电池与3GW高功率太阳能组件项目,该项目投资总额达人民币39.57亿元。值得关注的是,11月