在染料敏化太阳能电池中,大能隙和窄能隙光敏剂的高效抗聚集和优异的光捕获能力对抑制界面电荷复合、实现高开路电压至关重要。文章亮点分子结构优化提升性能:通过引入长烷基链有效抑制染料分子聚集,延长激发态寿命,显著提升开路电压至1.22V,并改善电荷分离与传输效率。共敏化策略实现高效光捕获:H7与窄带隙染料XY1b共敏化,互补吸收光谱,覆盖400–700nm范围,IPCE峰值超过90%,最终实现13.7%的PCE和29.7%的弱光效率,优于同类钙钛矿器件。
“27.32%!这一目标我们终于实现了!”日前,海南大学物理与光电工程学院的实验室内响起了欢呼声。该校新能源光电材料与器件团队自主研发的钙钛矿太阳能电池,经中国国家光伏产业计量测试中心认证,稳态
光电转换效率达27.32%,这一数值超越了美国国家可再生能源实验室今年2月公布的26.95%效率纪录,以及马丁·格林太阳能电池效率统计表5月收录的27.3%行业标杆值,标志着海南大学在第三代光伏技术
范围和改善材料工艺。在光伏中的应用场景光子倍增材料已在多种太阳能电池中开展了实验与模拟研究,并取得了提高电池性能的效果。图2总结了部分典型应用案例:左图(a)所示为染料敏化电池中在电极上涂覆的光子下
有机太阳能电池(OSCs)凭借其机械柔性优势,为可穿戴设备提供了独特的应用前景。鉴于此,青岛大学材料科学与工程学院/功能染料与技术研究院王逸凡副教授、薄志山教授、刘亚辉教授团队与美国西北
太阳能电池、染料敏化太阳能电池、量子点敏化太阳能电池材料与器件、光/电解水电极材料、复合电解质等。炘皓新能源的钙钛矿布局早有端倪。据钙钛矿行业数据库显示,2024年10月,炘皓新能源总经理陈杰曾在某次采访
Shalav团队将镧系基太阳能上转换器从理论研究推进至实用器件开发,奠定了该领域的基础。2009年,Demopoulos团队首次在染料敏化太阳能电池(DSSCs)中采用LaF₃/Er纳米晶体,验证了
一、引言当晶硅电池效率达到极限之后,要如何突破晶硅电池理论极限的限制,走向更高辉煌?打破瓶颈的关键在于如何提高太阳全光谱的利用率。光子上/下转换技术的引入,为解决这一瓶颈提供了创新方案,两者的结合
这些问题需要开发具有足够高效率的半透明光伏板,以便在商业上可行。一些可以做得足够薄以半透明的常见面板包括有机和染料敏化太阳能电池(DSSCs)。虽然这些被用来在种植西红柿和生菜时提供电力,但它们的功率
稳定性。除了这种稳定性外,这种钙钛矿还不含在高表面温度下可能溢出的挥发性成分。它通常还具有较高的PCE—这种成分的效率记录为21.15%,这比以前使用有机光伏(OPVs)和染料敏化电池(DSSCs)效率
服务于有机太阳能电池OPV、钙钛矿太阳电池、染料敏化太阳能电池、OLED、燃料电池等工艺研究领域。迪塔镁克在以涂布机为主的高端仪器设备行业耕耘了18年。公司现在提供的高精度狭缝式涂布机经过不断迭代更新
具有稀疏分子堆积的纳米级厚度的堆积。该方案与染料敏化和有机太阳能电池领域平行,其中次优结晶和不均匀性与适度的太阳能电池性能相关。然而,关于钙钛矿器件中SAMs在TCO衬底上的表面堆积和形态生长的细节
、数据质量等要求。加快研制新能源汽车、光伏、锂电池等产品碳足迹国家标准,服务外贸出口新优势。开展电子电器、塑料、建材等重点产品碳足迹标准研制。研究制定产品碳标识认证管理办法,研制碳标识相关国家标准。(三
回收利用相关标准。开展退役光伏设备、风电设备、动力电池回收利用标准研制,加大新能源产品设备的绿色设计标准供给,加快研制再生塑料、再生金属标准。按照《清洁生产评价指标体系通则》要求,研制钢铁、化工、建材等重