电子显微镜(TEM)图像(红色方框中的放大图像)图 5. 对照组和掺入 CY 的钙钛矿太阳能电池(PSCs)的归一化功率转换效率(PCE):(a)在未封装情况下暴露于潮湿环境(85%
相对湿度(RH
摘要同时实现有效的缺陷钝化和优异的电荷提取能够最大化钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)。与先前已有的基于异质结的 PSCs
不同,韩国蔚山国立科学技术院&高丽大学研究团队引入
PSCs 的外量子效率(EQE)和集成短路电流(Jsc)曲线。图 5. 器件稳定性(A) 未封装的 P3CT-TBB 基和 P3CT 基钙钛矿太阳能电池(PSCs)在 65°C
连续光照下进行最大功
近年来,在空穴传输层(HTLs),尤其是自组装单层(SAMs)的辅助下,倒置钙钛矿太阳能电池(PSCs)发展迅速。然而,目前器件性能强烈依赖于 HTL
厚度,其厚度需严格控制在 5 nm,若
文章介绍具有宽带隙钙钛矿和Cu(In,Ga)Se
2的薄膜叠层太阳能电池有望成为具有成本效益的轻质光致发光器件。然而,由于宽带隙钙钛矿中的复合损耗和光热诱导退化,钙钛矿/Cu(In,Ga)Se
2叠层太阳能电池的功率转换效率和稳定性尚不能与单结对应物相比。基于此,北京理工大学陈棋等人表明,钙钛矿钝化的常见策略往往失败下结合热和光照应力由于钝化剂解吸。作者展示了一个强大的钝化剂与设计的
钙钛矿太阳能电池(PSCs)近年来因高转换效率、低制造成本、可柔性设计等优点迅速崛起,成为光伏领域的“新星”。然而,伴随其产业化进程提速,一个被忽视但至关重要的议题正在显现:退役电池的可持续处理
(如HPbCD-BTCA)、沸石、羟基磷灰石或真菌吸附法捕获Pb²⁺;开发电化学还原Pb²⁺法、热水析晶法等实现高纯度PbI₂再生;Pb回收效率最高可达99.9%,再生成膜效率可媲美原始材料。4. 多组
&Bo He研究背景钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)已突破26.5%,逐步逼近最先进的晶体硅太阳能电池水平。在反式钙钛矿电池性能提升过程中,有机空穴选择性自组装分子(SAMs)发挥
传统小分子或聚合物空穴传输层的导电性。但迄今为止,具有双自由基特性的SAMs仍鲜有报道。如何设计出在PSCs中稳定高效工作、同时确保大面积均匀成膜的双自由基SAMs,仍是亟待突破的难题。此外,当前仍缺乏
个汇聚全球目光的舞台上,光伏产业链各环节的领军企业纷纷亮相。从上游的原材料、电池片制造,到中游的组件封装、逆变器生产,再到下游的电站建设、运维服务,以及配套的工程系统、储能、移动能源等各类企业,均携
保障,致力于推动全球光伏产业发展。在2025年SNEC展会上,中来股份携多项创新产品和技术精彩亮相。其中,柔性组件采用无玻璃双对称封装结构,重量轻、柔韧性好,适用于分布式光伏的特殊场景;BC组件则以全背
诺贝尔奖获得者Moungi G. Bawendi的团队,2025年在顶级期刊《Nature Reviews Methods
Primers》上发表了一篇关于钙钛矿太阳能电池的重磅综述,介绍了从
钙钛矿(ABX3)材料的晶体组成到钙钛矿太阳能电池(Perovskite Solar
Cells,PSCs)商业化面临的挑战,涵盖配方设计、界面工程、薄膜制备和电池表征等一系列内容,文章排版清楚而且
文章介绍钙钛矿太阳能电池 (PSC) 的效率得到了显着提高,但不平衡的 δ 到 α 相结晶转变动力学和缺陷仍然是器件可重复性和稳定性的重大障碍。基于此,中科院化学所宋延林等人利用草酸胍 (GAOA
钙钛矿结晶动力学的调制。(a)对照和(B)目标钙钛矿膜的GIWAXS强度沿沿着qz方向的时间演变。(c)GIWAXS峰位置和强度随时间的演变。(a)对照和(B)目标钙钛矿膜在退火下的原位PL光谱的
的风车,一座一座怒指天云;另一个就是硅基太阳能电池板,一片一片匍匐于地,为黎民百姓收集阳光与温暖。不过,单晶硅电池也不是没有问题。从产业化角度看,面临的挑战是生产成本高、制备工艺复杂、能耗高、且会造成
大于其他类型的电池,如图 2 所示。钙钛矿大面积电池,其效率损失严重之源在哪里呢?目前学界认知主要立足两点:(1)
钙钛矿薄膜的大面积制备工艺不成熟、难度较大。面积越大的薄膜,膜内缺陷越多、均匀性越
GIWAXS迹线(D)XPS Pb 4f光谱和(E)原始膜和分离膜的温度依赖性电导率。图2. 器件性能和稳定性。(A)0.16-cm 2原始和隔离太阳能电池的J-V特性。(B)具有785 cm 2孔径