PbI2。光学测量结果显示,DIMs的引入对HP薄膜的吸收光谱没有显著影响,但对PL光谱产生了变化,表明光物理质量得到改善。研究还通过混合DIM和钙钛矿前体溶液来制备HP薄膜,证实了DIM有助于形成新的
外部量子效率(EQE)和降低能量损失。从加工的角度来看,PQDs在工业制造中相对于钙钛矿薄膜具有优势,可以将结晶过程与沉积过程分开。这一特性还允许使用更环保的溶剂(如正辛烷、甲基醋酸和乙酸乙酯),而不像
钙钛矿薄膜那样主要依赖二甲基甲酰胺进行处理。二、成果简介虽然基于铅卤钙钛矿的胶体量子点(PQDs)已成为太阳能电池中具有前景的光活性材料,但迄今为止的研究主要集中在无机阳离子PQDs上,尽管有机阳离子
虽然基于钙钛矿的光伏技术正朝着商业化迈进,但关于哪种制备技术——基于溶液、基于蒸发或二者结合——将为更快的经济突破铺平道路,这仍然是一个未解之谜。绝大多数研究采用溶液法制备钙钛矿薄膜,这种方法在现代
方法可获得低缺陷、单一界面的高质量二维/三维钙钛矿异质结,但是复杂、苛刻的制备工艺限制了其在大面积钙钛矿薄膜及器件中的应用。”为此,该研究团队开发了简便的一步溶液外延生长方法,通过简单旋涂,制备出可大
的钝化。2013年德国Fraunhofer研究所第一次将隧穿氧化钝化的概念应用于太阳能电池上,制备了TOPCon太阳能电池,并一路将TOPCon太阳能电池的效率提升到26%。这个时候,TOPCon
近期公布的独特注入金属化的技术,我们称之为JSIM辅助烧结。要解释辅助烧结的原理,首先就要知道为什么需要利用辅助烧结对它进行改进。我们知道,电池片要制备成电池,需要在上面进行丝印,将金属浆料丝印在电池片
,异质结作为单p/n结的技术终点,拓展性比较好,未来它和钙钛矿、薄膜技术结合起来形成叠层电池,相率将达到30%以上。我们也知道,异质结和其他类型的电池技术已经共存了很多年,但一直得不到很大的普及,原因是
可以实现互相兼容。但TOPCon完全不同,正背面基本对称,所以它的工艺流程是最为简单的,核心步骤和PERC也是完全不同的,它的核心步骤是非晶硅、微晶硅和TOC膜的制备。与PERC产线不兼容,对组件厂商来说就
的制备工艺和设备解决方案,这也是鹑火光电公司正在致力于的发展方向。在高质量钙钛矿薄膜及电池制备技术方面,鹑火光电采用超低气流气淬成膜技术和双重后期处理策略,使得器件良品率从50%提高至90%,实现超过
背面无铟TCO薄膜;利用PVD设备在N型掺杂层上制备正面含铟TCO种子层,并在正面含铟TCO种子层上制备正面无铟TCO薄膜;以及分别制备背面电极、正面电极。在公布该专利的同时,国家知识产权局还同步公告
多家研究机构指出,我国铜铟镓硒太阳能电池产业正处于起步阶段,相关研究工作不断开展,部分地区启动了应用试点,但没有形成产业链。▲车载薄膜太阳能电池组件。3%至4%——这是目前薄膜太阳能电池在全球的
市占率,虽然与晶硅太阳能电池相比体量还很小,但随着晶硅太阳能电池降本难度越来越大,光伏产业正迎来新一轮技术创新迭代周期,以铜铟镓硒为代表的薄膜太阳能电池有了更多用武之地。多家研究机构指出,我国铜铟镓硒
为气体,其中纯度在6N以上的称为电子级硅烷气。硅烷作为一种普遍使用的含硅气体,主要通过化学气相沉积在器件衬底表面形成薄膜或直接形成硅晶体。虽然我国电子特气行业起步较晚,但自2008年以来,随着兴洋科技
,近年来公司积极推进在颗粒状多晶硅领域的研发布局,持续开展基础技术和制备工艺的自主创新,已完成多个研发项目并获得发明专利技术成果。通过本次募投项目实施,公司将新建生产厂房和生产线,实现颗粒状电子级