本文东南大学姚惠峰等人通过在苯并二噻吩单元上引入长共轭侧链——氯化烯丙硫基-噻吩-乙烯-噻吩,设计了一种二维共轭聚合物给体PBDB-tvt。最终,最优器件实现了20.3%的最高PCE。多功能中间层协同增效:PBDB-tvt中间层不仅优化了垂直相分布,还增强了短波长光吸收,提升电荷传输与提取效率,抑制复合。
动态网络能够在剪切诱导流动下实现钙钛矿胶体颗粒的均匀共沉积,产生高质量晶体薄膜,并提升光电性能。使用机械互锁网络掺杂的前驱体墨水制备的柔性钙钛矿太阳能电池表现出优异性能,小型器件实现创纪录的功率转换效率26.22%。柔性钙钛矿太阳能器件的光伏性能和运行稳定性。a、柔性钙钛矿太阳能电池的示意结构。这种晶体质量的改善不仅提升了器件性能,还显著增强了柔性钙钛矿太阳能电池的长期稳定性。
柔性钙钛矿太阳能电池可实现高效弯曲能量转换,推动下一代可穿戴设备发展。然而,从实验室规模原型向工业规模组件的转变,受限于印刷过程中钙钛矿胶体颗粒的不均匀沉积,导致功率转换效率下降。高效率与大面积兼容:实现小面积器件26.22%和大面积组件19.44%的认证效率,突破柔性钙钛矿光伏的尺寸限制。
结论展望本研究通过设计具有聚集增强发光特性的高发光聚合物给体PINTSO-F,并将其作为第三组分精准定位至给体-受体界面,成功实现了对有机太阳能电池非辐射复合的有效抑制和电荷动力学的协同优化,最终获得了效率超过20%、非辐射电压损失低至0.192V的高性能器件。
此外,锂螯合作用固定了水分子,减缓了湿气侵入。结构优化与性能提升:Li螯合使π–π堆积距离缩短,聚合物结晶度提高,空穴迁移率显著增强,器件效率从11.8%提升至13.7%。
为此,日本广岛大学ItaruOsaka团队设计并合成了一种结构简化、合成便捷的高效聚合物给体PTz3TE。通过引入改良合成复杂度指标进行量化评估,PTz3TE被证实是当前性价比最高的聚合物给体之一。该研究为OPVs的材料设计与商业化提供了重要借鉴。结论展望该团队通过精妙的分子与合成设计,成功打造了聚合物给体PTz3TE,实现了“高性能”与“易合成”的理想结合。
溶液法制备的钙钛矿太阳能电池具有大规模生产的巨大潜力,但制备大面积高结晶度的钙钛矿薄膜仍是一个主要挑战。功能性氟基团与钙钛矿物种的协同配位作用限制了复杂中间相的形成,并促进了具有高结晶度和高相纯度的空间定向钙钛矿薄膜的形成。
论文概览针对钙钛矿太阳能电池在潮湿环境下本征不稳定性导致的性能衰退问题,韩国汉阳大学与高丽大学研究团队创新性地提出利用树枝状大分子作为挥发性组分储存器,实现钙钛矿材料的可持续自修复。深度精度Figure1展示了含有多功能树枝状聚合物的钙钛矿太阳能电池的可重复自修复性能。Figure5通过分子模拟和示意图,阐明了树枝状聚合物NHD实现钙钛矿可持续自修复的机制。
厚活性层的引入是实现有机太阳能电池大规模工业化生产的关键要求。然而,实现高效厚膜器件仍然具有挑战性,尤其是对于全聚合物OSCs,这类电池通常被认为是最稳定的OSC类型。本研究引入了一种非接触式DC电场方法,旨在缓解厚膜全聚合物体系从实验室走向制造过程中遇到的制备难题,有望推动OSC产业化进程。实现厚膜全聚合物OSC最高效率:PM6:PY-TYT2-5体系在350nm厚膜下实现17.59%的效率,创刮涂制备全聚合物OSC的纪录,媲美旋涂器件。
本研究北京航空航天大学殷鹏刚和黄建媚等人将多功能聚合物聚醋酸乙烯酯引入PbI前驱体,其丰富的羰基基团有效抑制PbI结晶并释放应力,延缓其与铵盐的反应速率,从而调控钙钛矿薄膜的结晶过程。效率与稳定性双突破:器件PCE达25.79%,创两步法制备FA基钙钛矿电池新高;PVAc在晶界处的钝化作用使器件存储、热稳定性和运行稳定性显著提升。